Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

An Upper Bound Elemental Technique for Load Prediction of Axisymmetric Hot Forged Specimens

2017-01-10
2017-26-0168
Forging is a metal forming process involving shaping of metal by the application of compressive forces using hammer or press. Forging load of equipment is an important function of forging process and the prediction of the same is essential for selection of appropriate equipment. In this study a hot forging material i.e. 42CrMo4 steel is selected which is used in automotive components like axle, crank shaft. Hot forging experiments at 750°C are carried out on cylindrical specimens of aspect ratio 0.75 and 1.5 with true height strain (ln (ho/hf)) of 0.6. Forging load for the experiments is calculated using slab and upper bound deformation models as well as Metal forming simulation using commercially available FEA software. The upper bound models with 30% deviation from the simulation results are found to be more accurate compared to the slab models.
Technical Paper

Systematic Evaluation of 20% Ethanol Gasoline Blend (E20) as a Potential Alternate Fuel

2017-01-10
2017-26-0072
Utilization of higher ethanol blends, 20% ethanol in gasoline (E20), as an alternate fuel can provide apparent benefits like higher octane number leading to improved anti-knocking properties, higher oxygen content resulting in complete combustion. Apart from technical benefits, use of ethanol blends offer certain widespread socioeconomic benefits including option of renewable source of energy, value addition to agriculture feedstock resulting in increase in farm income, creation of more jobs in rural sector and creating job at local levels. Use of higher blends of ethanol can reduce dependence on foreign crude leading to substantial savings in cost of petroleum import. The impact of higher Gasoline-Ethanol blend (E20), on the fuel system components of gasoline vehicles must be known for assessment of whether the fuel system will be able to perform as intended for the complete design life of the system.
Technical Paper

Contribution of Organic and Elemental Carbon Fractions in Indian in-Used Vehicle-Exhaust Particulate Matter

2015-01-14
2015-26-0107
Airborne particulate matter (PM) in an urban atmosphere is a result of contribution from diverse range of source including domestic, industry and vehicles. PM emission is a matter a concern due to its multiple impacts on public health, air quality, and global climate. Ever increasing number of vehicles plying on the road is considered to be one of the major sources of PM. Particles in gasoline and diesel vehicle exhaust carry distinctive combinations of certain chemical compounds. Prominence of their chemical signature in ambient particulate matter can be considered as a direct indication of their relative importance as sources of emissions. In this study, Chemical speciation data of vehicle exhaust PM is analyzed and vehicle category wise distribution of carbon fractions is presented for different engine technologies and fuel types.
Technical Paper

Light-weight Materials and their Automotive Applications

2014-04-28
2014-28-0025
Automobile industry is shifting towards lighter materials in order to meet the high strength to weight ratio as required for better performance, safety, and environmental concern. The objective of this review is to evaluate and compare the different advanced and light weight materials like advanced high strength steel (AHSS), Magnesium and Aluminium alloys, which will help in selection of appropriate materials for their intended application. In this paper comparison of materials on the basis of their current, applications, limitations, cost, potential future applications and percentage wise use in automotive vehicles are discussed. Solutions and suggestions are discussed to overcome the limitations of materials which will widen their future application. Case studies and charts for cost evaluation of different materials, on the basis of structural properties like stiffness and strength are also discussed.
Technical Paper

Study of Compatibility of Metals used in Fuel System of Gasoline Engine with E10 and E20

2013-11-27
2013-01-2880
Impact of higher gasoline-ethanol blends E10 and E20, on the fuel system components of gasoline vehicles must be known to ascertain the intended performance of these components throughout its service life. Study of compatibility of particular selected grades of metals, like Aluminium alloy, Brass & Stainless steel, with ethanol-gasoline blends (E10 and E20) in comparison with Commercial gasoline was conducted as per the guidelines given in SAE J1747. Three specimen of each metal were exposed (Fully immersed, half immersed & Vapour) to above fuels at 45 °C for 2016 hours. Mass loss/ gain data was recorded periodically at the end of 1st, 3rd, 6th, and 12th week and based on this data corrosion rate was calculated. Substantial tarnishing was observed in case of brass & slight colour change in case of aluminium & steel alloys. All the three distinct metals grades tested were found compatible with E10 & E20 with no significant corrosion rate at the end of the test period.
X