Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Combustion Behavior Analysis in a Transparent Research Engine Equipped with a Common Rail Diesel Injection System

2000-06-19
2000-01-1825
This paper describes a preliminary characterization of in-cylinder spray and combustion behavior from a high-pressure common rail injection system. The engine used in the tests was a single-cylinder optical research diesel engine, adequately developed in a full-fired version, equipped with a common rail injection system. An elongated piston allows for the optical access to the combustion chamber for diagnostic applications. Characteristic of the optical engine is the availability to investigate different combustion system designs due to an interchangeable head-cylinder group. The system configuration tested in the present work corresponds to a four-cylinder engine of 1930 cc of displacement that is representative in the class of light duty d.i. diesel engine. Spray and combustion evolutions were visualized through a high-speed CCD camera synchronized with a copper vapor laser acting as light source.
Technical Paper

Experimental Investigation on High-Quality Diesel Fuels Effects in a Light Duty CR Diesel Engine

2000-06-19
2000-01-1911
In this paper some preliminary results on the emission performance of a modern CR DI diesel engine running on reformulated diesel fuels are discussed. The engine employed in the tests was a Fiat M724 1910cc, installed on Alfa Romeo 156 1.9 JTD. Modern injection systems can modify the spray structure with respect to a spray of a classical rotary injection pump so the well-consolidated knowledge on the correlation between fuel parameters and pollutant emissions may not be valid for the new generation of DI diesel engines. Two high quality fossil fuels and a synthetic fuel were selected for the tests. Tests were directed to analyze the relative influence on exhaust emissions between injection parameters and fuel quality. One engine test point (2000 rpm × 2 bar of b.m.e.p.) was chosen, with different setting of injection pressure, EGR ratio and pilot injection activation.
Technical Paper

Potentiality of Oxygenated Synthetic Fuel and Reformulated Fuel on Emissions from a Modern DI Diesel Engine

1999-10-25
1999-01-3595
This paper presents the performances of a modern DI diesel engine, equipped with a Common Rail injection system, fed on blends of an advanced diesel fuel (base fuel) and Diethylene-Glycol-Dimethyl-Ether (Diglyme - C6H14O3). The base fuel was a reformulated diesel fuel with low aromatic and sulfur content. Three blends with different volumetric percentage of Diglyme (10, 20 and 30%) in the base fuel were prepared and tested. The engine was a FIAT M724, installed in a Alfa Romeo 156 1.9 JTD, with a Bosch Common Rail injection system (EDC-15C). At the exhaust of the engine, soot, NOx, HC, CO, and CO2 were measured. The experiments represent the potential of diesel reformulation technology with synthetic fuels coupled with the new diesel technology generation.
Technical Paper

Evaluation of Combustion Behavior and Pollutants Emission of Advanced Fuel Formulations by Single Cylinder Engine Experiments

1998-10-19
982492
According to the results of several studies concerning the influence of fuel formulation on exhaust emissions from diesel engines, a new matrix of twelve fuels was tested in a single cylinder DI diesel engine of conventional technology. The matrix was designed by the partners of the FLOLEV research project, partly founded by the E.U., in the framework JOULE III program. The aim of the project is to study the influence on pollutants emission reduction of modern refining process and fuel additivation with some alternative fuels and cetane improvers. The fuel matrix is structured into three sub-matrices. The first sub-matrix is constituted by six fuels which represent different products obtainable with the modern refinery technology. The second and third sub-matrices were designed to test the influence of cetane improver additives and high-oxygenated fuels respectively.
X