Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Possible Exhaust Gas Aftertreatment Concepts for Passenger Car Diesel Engines with Sulphur-free Fuel

1999-03-01
1999-01-1328
In order to fulfill future emissions standards, there is a need for new exhaust-gas aftertreatment concepts, with NOx-emissions reduction in passenger car diesel engines being of particular importance. The NOx storage catalyst is one of the technologies currently under discussion with high NOx conversion potential, and which is under development at DaimlerChrysler for EURO IV standards. With this system, the nitrogen oxides contained in the diesel exhaust gas are stored under lean exhaust-gas conditions and are reduced in the catalyst through an enriched air-fuel ratio of the exhaust-gas and favorable thermal conditions. Hydrocarbons, carbon monoxide and hydrogen are used as reducing agents. DaimlerChrysler has analyzed the effect of sulphur contained in the fuel on the operation of various catalysts during laboratory and engine testing. The sulphur dioxide in the exhaust gas generates sulfates, which remain on the catalyst when nitrate compounds are regenerated briefly.
Technical Paper

The 2-Stroke DI-Diesel Engine with Common Rail Injection for Passenger Car Application

1998-02-23
981032
A common rail injection system was applied to port-loop and uniflow scavenged two-stroke DI-Diesel engines. While the uniflow scavenged configuration was operated with a swirl level comparable to that of 4-stroke DI-Diesel engines, no swirl motion was realized with the port-loop scavenged arrangement. The results show that, in spite of disadvantages in the mixture formation process, the high mixture formation energy observed with the common rail injection makes a swirl-free Diesel combustion possible. However, at part load the combustion process and emission level with the port-loop scavenged engine is not satisfactory. At full load, disadvantages in the scavenging process are observed in addition to the poorer mixture formation with the loop scavenged two-stroke concept. Consequently, the expected specific power output of the port-loop scavenged arrangement is with 20 kW/l far lower than about 45 kW/l predicted for the uniflow scavenged engine.
Technical Paper

The Influence of the Valve Stroke Design in Variable Valve Timing Systems on Load Cycle, Mixture Formation and the Combustion Process in Conjunction with Throttle-Free Load Governing

1998-02-23
981030
In conjunction with throttle-free load control on a 4-valve, single-cylinder spark-ignition engine, the influencing variables of charge cycle, mixture formation and combustion process are presented both as computer calculations and on the basis of test results. The influences of the position of the maximum of the inlet valve stroke, the position of the inlet close, the shape of the valve stroke and the load motion in relation to the maximum power and minimum fuel consumption are investigated in full load by computer calculations and in partial load by engine tests.
Technical Paper

Evaluation of NOx Storage Catalysts as an Effective System for NOx Removal from the Exhaust Gas of Leanburn Gasoline Engines

1995-10-01
952490
One possibility to improve the fuel economy of SI-engines is to run the engine with a lean air-fuel-ratio (AFR). Hydrocarbon and carbon monoxide after-treatment has been proven under lean operation, but NOx-control remains a challenge to catalyst and car manufacturers. One strategy that is being considered is to run the engine lean with occasional operation at stoichiometry. This would be in conjunction with a three-way-catalyst (TWC) to achieve stoichiometric conversion of the three main pollutants in the normal way and a NOx trap. The NOx trap stores NOx under lean operation to be released and reduced under rich conditions. The trap also functions as a TWC and has good HC and CO conversion at both lean and stoichiometric AFR's. Under lean conditions NO is oxidised to NO2 on Pt which is then adsorbed on an oxide surface. Typical adsorbent materials include oxides of potassium, calcium, zirconium, strontium, lanthanum, cerium and barium.
X