Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Advanced Three-Way Catalyst Formulations for High Temperature Applications

1993-03-01
930076
Enhancements in the thermal stability of three-way catalysts have been achieved by: 1) developing improved methods for the incorporation of ceria into catalyst formulations and 2) identifying a proprietary stabilizer which reduces the rate of ceria sintering at high temperature. Improvements in thermal stability are demonstrated by comparing the FTP and engine dynamometer performance of new formulations with a standard formulation after aging on several high temperature engine dynamometer cycles.
Technical Paper

The Design of Flow-Through Diesel Oxidation Catalysts

1993-03-01
930130
Progress made in reducing engine-out particulate emissions has prompted a revival in the design of flow-through oxidation catalysts for diesel engine applications. Effort in this area has focused primarily in the area of SOF control for the further reduction of particulate emissions. The work reported here covers some of the catalyst design parameters important for SOF and gas phase pollutant control. This is illustrated with both laboratory reactor and engine evaluation data for several formulary and operating parameters. Platinum-based catalysts are shown to be generally the most active, but they require treatments or additives to reduce the inherently high activity of platinum for the oxidation of SO2 present in the exhaust. The effect of additives and their loading on the oxidation activity of Pt/alumina for HC, CO, SOF and SO2 oxidation is discussed in detail and additives are identified which reduce SO2 oxidation with minimal effect on HC, CO or SOF oxidation activity.
Technical Paper

Nickel-Free Hydrogen Sulfide Control Technology for European Applications

1993-03-01
930777
In the USA, hydrogen sulfide emissions from three-way catalytic converter-equipped automobiles are effectively suppressed by the addition of nickel to catalyst formulations. This approach is generally not utilized in catalyst formulations for Europe because of European concern about the health, safety and environmental issues surrounding the use of nickel. A modified form of iron oxide has been identified which suppresses hydrogen sulfide emissions from three-way catalysts. This suppression has been achieved without affecting the fresh or aged performance of the catalyst, a problem often encountered with other materials. The performance and durability of catalyst formulations incorporating the new material are demonstrated with a variety of aging and evaluation protocols.
X