Refine Your Search

Search Results

Author:
Viewing 1 to 7 of 7
Technical Paper

Three-Way-Catalyst Modeling - A Comparison of 1D and 2D Simulations

2007-04-16
2007-01-1071
In this paper we present a comparison of two different approaches to model three-way catalyst. First, a numerical sample case simulating light-off is used to compare the 1D and the 2D models. The advantages of each code are discussed with respect to required input data, detail level of the output, comparability, and computation time. Thus, the 2D model reveals significant radial temperature gradients inside the monolith during light-off. In a second step, the 2D model is compared with experimental data. One set of data consists of an air/fuel ratio varying sweep at isothermal conditions. Another set was gained by emission measurements during a real driving MVEG tests with varying substrate cell density & inlet conditions. From these experiments the applicability of the model to numerical parameter studies is discussed.
Technical Paper

Modeling of SCR DeNOx Catalyst - Looking at the Impact of Substrate Attributes

2003-03-03
2003-01-0845
The present work intends to examine the selective NOx reduction efficiency of a current commercial Titanium-Vanadium washcoated catalyst and to develop a transient numerical model capable of describing the SCR process while using a wide range of inlet conditions such as space velocity, oxygen concentrations, water concentration and NO2/NO ratio. The concentrations of different components (NO, NO2, N2O, NH3, H2O and HNO3) were analyzed continuously by a FT-IR spectrometer. A temperature range from 150°C up to 650°C was examined and tests were carried out using a model exhaust gas comparable to the real diesel exhaust gas composition. There is a very good correlation between experimental and calculated results with the given chemical kinetics.
Technical Paper

In-Situ NH3 Generation for SCR NOx Applications

2002-10-21
2002-01-2872
There is currently a need for a practical solution for NOx abatement in automotive diesel engines. Technologies developed thus far suffer from inherent technical limitations. The selective catalytic reduction (SCR) of NOx under lean conditions has been proven to be successful for stationary applications. A new approach is described to efficiently remove NOx from the exhaust of a diesel engine powered vehicle and convert it to nitrogen and oxygen. The key to the approach is the development of an on board (in-situ) ammonia generating catalyst. The ammonia is then used as a reagent to react with exhaust NO over a secondary SCR catalyst downstream. The system can remove over 85% of the exhaust NO under achievable diesel engine operating conditions, while eliminating the potential for ammonia slip with a minimal system of sensors and feedback controls.
Technical Paper

Airless In-Line Adsorber System for Reducing Cold Start HC Emissions

1998-02-23
980419
A completely passive cold-start emissions control system, without any secondary air source, was developed to reduce cold start hydrocarbon (HC) emissions. The Air-Less Adsorber (ALA) system has a first catalyst, an adsorber, and a second catalyst. The system is designed to adsorb a large fraction of hydrocarbons (HC) during cold start, followed by optimized heating of the second catalyst before adsorber HC desorption. During the HC desorption cycle, the engine is running in closed-loop control near stochiometric air/fuel ratio. There is enough oxygen to oxidize the desorbed HC over the second catalyst. The ALA system was evaluated using the FTP test on a 3.8 liter V6 vehicle. The ALA system reduced up to 38% of cold start HC emissions beyond the catalyst-only baseline. The system is truly passive.
Technical Paper

Evaluation of In-Line Adsorber Technology

1997-02-24
970267
To meet tightening emissions standards, alternate pollution abatement technologies are necessary, such as an In-Line Adsorber (ILA) system. The ILA has a first catalyst, an adsorber, and a second catalyst. A diverter directs exhaust gas through the adsorber to capture unconverted hydrocarbons until the first catalyst reaches light-off temperature. The ILA system was designed so that the second catalyst becomes active concurrent with the adsorber hydrocarbon desorption. The system was evaluated using the FTP test with two different secondary air strategies on 3.8 liter V6 and 4.0 liter V8 vehicles. The ILA system performance consistently reduced ∼50-60% of cold start hydrocarbon emissions. This study examined a simplified ILA system designed to operate with a commercial secondary air pump powered by the engine.
Technical Paper

In-Line Hydrocarbon Adsorber System for ULEV

1996-02-01
960348
An In-line hydrocarbon (HC) adsorber system was developed to reduce cold start HC emissions. The system comprises a first catalyst, adsorber unit, and a second catalyst for oxidation of desorbed HC. During cold start, exhaust gas is directed to the hydrocarbon adsorber using a fluidic flow diverter unit without any mechanical moving parts in the exhaust system. After the first catalyst lights off, the diverter is shut off and the major portion of the exhaust gas then flows directly to the second catalyst without heating the adsorber unit. After the second catalyst reaches light-off temperature additional air was added to oxidize the desorbed HC. The system attributes: NMHC emissions in ULEV range Straight line axial flow Reliable design Limited back pressure penalty The system was tested on a 3.8L U.S. vehicle.
Technical Paper

By-Pass Hydrocarbon Absorber System for ULEV

1996-02-01
960343
A by-pass zeolite adsorber system consisting of a first catalyst, a by-pass loop containing the zeolite adsorbers followed by a downstream second catalyst was FTP tested using a U.S. vehicle equipped with a 3.8 L, V6 engine. The system exhibited ULEV emissions performance with hydrocarbon adsorption and regeneration (desorption and oxidation) within the FTP cycle and required only a single diversion valve within the exhaust line. Adsorption takes place during the initial 70 seconds of the FTP cycle. The adsorbers were regenerated with the exhaust gas plus injected air.
X