Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Advanced Emission Control Technologies for PM Reduction in Heavy-Duty Applications

2003-05-19
2003-01-1862
1 In this paper results obtained with different particulate matter (PM) reduction technologies are presented. Diesel oxidation catalysts (DOC) are well known as a reliable PM reduction technology which can efficiently remove the soluble organic fraction (SOF) but which has no effect on the solid particles in PM. A drawback is that in combination with high sulfur fuel, oxidation of SO2 to SO3 by the DOC can occur, resulting in an increase of PM emissions. An alternative technology that is proven to significantly reduce soot emissions comprises diesel particulate wall-flow filters. High filtration efficiencies of up to 90% and beyond are feasible. The main obstacle is the combustion of the trapped soot. As shown in this paper, the application of a catalyst coating to the filter aids the filter regeneration by lowering the balance-point temperature. The main disadvantages of wall-flow filters are an increase in back-pressure and possible plugging caused by oil-ash accumulations.
Technical Paper

Advanced Urea SCR Catalysts for Automotive Applications

2001-03-05
2001-01-0514
The LEV II and EURO V legislation in 2007/2008 require a high conversion level for nitrogen oxides to meet the emission levels for diesel SUVs and trucks. Therefore, U.S. and European truck manufacturers are considering the introduction of urea SCR systems no later than model year 2005. The current SCR catalysts are based mainly on systems derived from stationary power plant applications. Therefore, improved washcoat based monolith catalysts were developed using standard types of formulations. These catalysts achieved high conversion levels similar to extruded systems in passenger car and truck test cycles. However, to meet further tightening of standards, a new class of catalysts was developed. These advanced type of catalytic coatings proved to be equivalent or even better than standard washcoat formulations. Results will be shown from ESC, MVEG and US-FTP 75 tests to illustrate the progress in catalyst design for urea SCR.
X