Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

The Measurement of Transient Aerodynamics Using an Oscillating Model Facility

2006-04-03
2006-01-0338
A method for the estimation of transient aerodynamic data from dynamic wind tunnel tests has been developed and employed in the study of the unsteady response of simple automotive type bodies. The paper describes the facility and analysis techniques employed and reports the results of a parametric study of model rear slant angle and of the influence of C-pillar strakes. The model is shown to exhibit damped, self-sustained and self-excited behaviour. The transient results are compared with quasi-steady predictions based on conventional tunnel balance data through the calculation of derivative magnification factors. For all slant angles tested the results show that the quasi-steady prediction is a poor estimate of the real transient behaviour. In addition the slant angle is shown to have significant effect on the level of unsteadiness. The addition of C-pillar strakes is shown to stabilise the flow with even small height strakes yielding responses well below that of steady-state.
Technical Paper

A Comparison of On-Road Aerodynamic Drag Measurements with Wind Tunnel Data from Pininfarina and MIRA

1998-02-23
980394
The principal development tool for the vehicle aerodynamicist continues to be the full-scale wind tunnel. It is expected that this will continue for many years in the absence of a reliable alternative. As a true simulation of conditions on the road, the conventional full-scale wind tunnel has limitations. For example, the ground is fixed relative to the vehicle, allowing an unrepresentative boundary layer to develop, and the wheels of the test vehicle do not rotate. These limitations are known to influence measured aerodynamic data. In order to improve the representation of road conditions in the wind tunnel, most of the techniques used have attempted to control the ground plane boundary layer. Only at model scale has the introduction of a moving ground plane and rotating wheels been widely adopted. The Pininfarina full-scale wind tunnel now incorporates the Ground Effect Simulation System which allows testing with a moving belt and rotating wheels.
Technical Paper

Measurement of Formula One Car Drag Forces on the Test Track

1996-12-01
962517
Coastdown testing is a proven method for determining the drag coefficients for road cars whilst the vehicle is in its normal operating environment. An accurate method of achieving this has been successfully developed at Loughborough University. This paper describes the adaptation and application of these techniques to the special case of a contemporary Formula One racing car. The work was undertaken in conjunction with the Benetton Formula One racing team. The paper outlines the development and application of a suitable mathematical model for this particular type of vehicle. The model includes the aerodynamic, tyre, drivetrain and the un-driven wheel drags and accounts for the change in aerodynamic drag due to ambient wind and changes in vehicle ride height during the coastdown. The test and analysis methods are described.
Technical Paper

On-Road Aerodynamic Drag Measurements Compared with Wind Tunnel Data

1995-02-01
950627
Ever since aerodynamics became an essential element of the automobile design process, the principal development tool for the vehicle aerodynamicist has been the full-scale wind tunnel. In the absence of a reliable alternative, it is expected that this will continue for many years. As a true simulation of the conditions on the road the conventional full-scale wind tunnel has limitations. The ground is fixed relative to the vehicle allowing an unrepresentative boundary layer to develop, the wheels of the test vehicle do not rotate and there is some uncertainty over the influences imposed by the tunnel walls. In addition, the aerodynamic data obtained from different wind tunnels shows a degree of scatter and even configuration changes do not necessarily produce consistent effects. With particular regard for aerodynamic drag, the aerodynamicist should ensure that gains obtained in the wind tunnel generate real benefits on the road.
Technical Paper

A Detailed Drag Study Using the Coastdown Method

1994-03-01
940420
This paper describes a technique for determining the components of vehicle drag based on the well established coastdown method. Using on board anemometers to continuously measure the ambient wind input and a sophisticated analysis procedure the method makes it possible for small changes in vehicle configuration to be analysed. The experimental technique and analytical approach are described and discussed in detail, and the accuracy achieved and that expected in further tests is highlighted.
Technical Paper

Model for Drivers' Perception of Vehicle Performance

1994-03-01
940386
A driver's preference for one of two different vehicle models that have the same measurable acceleration may be explained by complicated factors such as styling, NVH or ergonomics. If the vehicles have identical appearance but different levels of engine tune, discrimination would probably be due to the measurable difference in performance although other factors cannot be entirely discounted. If however, the assessment is made of vehicles with identical appearance and identical performance then any preference is attributable to an area of human assessment that has been termed subjective performance. This paper discusses the first step in a qualitative approach to the analysis of driver perception of vehicle performance and more specifically investigates subjective performance. The proposed model ascribes distinct components such as induced and perceived performance to the total subjective performance rating.
X