Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Multi-material Approach with Integrated Joining Technologies in the New Volvo S80

1999-09-28
1999-01-3147
In May 1998 Volvo launched its most exclusive car model so far, the Volvo S80, which is aimed to compete with upper luxury segment products. The car is produced in the new production facility in the Torslanda plant in Sweden. Among the more highlighted features were a transversely mounted in-line six cylinder engine with a specially designed gearbox, electronic multiplex technology with 18 computers in the network, and safety features like stability and traction control (STC), front seats with integrated antiwhiplash system (WHIPS) and inflatable curtain (IC) for improved side impact protection. To fulfill the product's high demands on safety, quality and environmental care, the design, materials selection and assembly of the car body with high precision had to be very carefully engineered. As in previous product-/process development a holistic and concurrent engineering approach was necessary.
Technical Paper

Body and Component Accuracy in Assembly Systems

1998-09-29
982269
To give the customer an immediate impression of quality several of criteria must be fulfilled such as styling, paint finish and fitting of outer panels/closures. Therefore, higher demands on geometrical quality e.g. stability for both exterior and interior are needed. The structural part of the car body is the key element for success. Beside the visual impression, lack of noise and vibrations during driving can convince a potential buyer to become an actual customer. To achieve this, car manufacturers have to draw up an overall strategy in combination with proper working methods to be able to guarantee a stable geometrical output throughout the entire development process and during series production over the lifetime of the vehicle. On a simultaneous engineering basis, the OEM, the system/component- and the process suppliers (for the industrial system from press shop to final assembly) have to adopt a common measurement strategy.
Technical Paper

High Precision in Car Body Manufacturing

1995-02-01
950573
Flexible car body production, including prototyping, is one answer to the market targets where customers ask for an increasing number of models / variants and shorter lead time. The in-house interests of car builders are, besides investment and manpower flexibility, also improved product quality. Quality in body in white is mainly related to geometry (= high precision), to make sure that the final assembly shops will have the right conditions to keep customers satisfied (flush in doors, hood, fenders etc.). The consequences are that both the product and the process equipment have to be in a stable condition to guarantee low spread in the complete car-body. CAD technology is one of the keys to reach this goal, where: Off-line tooling Off-line programming Flow simulation Measurement strategy, off-line / in-line are the main powerful tools to reduce lead time as well as costs.
Technical Paper

Roof Laser Welding in Series Production

1993-03-01
930028
High power laser technology has been strongly highlighted as a future welding process for the automotive industry, particularly for welding the car body structure. The main reasons are: Higher tensile and fatigue strength in the welded joint (stronger body) More stable and improved body tolerances Higher finish quality New design potential To fully utilise this potential and to minimise the constraints of the laser welding process, there is a need for full-scale application tests. These must be performed within the automotive companies i.e. in the pilot plant. Technological and production system related risks must be eliminated or minimised prior to series production and this has been done in a short period of time. For two years now the new Volvo 850 is the only car on the market where the roof is laser welded by using a Pressure Roller Device, PRD. The PRD is used to fix the sheets together during the welding operation.
X