Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

A Pre-Design Model to Estimate the Effect of Variable Inlet Guide Vanes on the Performance Map of a Centrifugal Compressor for Automotive Applications

2017-09-04
2017-24-0020
The onset of aerodynamic instabilities in proximity of the left margin of the operating curve represents one of the main limitations for centrifugal compressors in turbocharging applications. An anticipated stall/surge onset is indeed particularly detrimental at those high boost pressures that are typical of engine downsizing applications using a turbocharger. Several stabilization techniques have been investigated so far to increase the rangeability of the compressor without excessively reducing the efficiency. One of the most exploited solutions is represented by the use of upstream axial variable inlet guide vanes (VIGV) to impart a pre-whirl angle to the inlet flow. In the pre-design phase of a new stage or when selecting, for example, an existing unit from an industrial catalogue, it is however not easy to get a prompt estimation of the attended modifications induced by the VIGV on the performance map of the compressor. A simplified model to this end is presented in the study.
Technical Paper

Analysis of the Turbocharger Speed to Estimate the Cylinder-to-Cylinder Injection Variations - Part 2 - Frequency Domain Analysis

2016-11-08
2016-32-0085
For the development of a very high efficiency engine, the continuous monitoring of the engine operating conditions is needed. Moreover, the early detection of engine faults is fundamental in order to take appropriate corrective actions and avoid malfunctioning and failures. The in-cylinder pressure is the most direct parameter associated to the engine thermodynamic cycle. The cost and the intrusiveness of the dynamic pressure sensor and the harsh operating condition that limits its life-time, make the direct measurement of the in-cylinder pressure not suitable for mass production applications. Consequently, research is oriented on the measurement of physical phenomena linked to the thermodynamic cycle to obtain useful information for the ICE control.
Technical Paper

Analysis of the Turbocharger Speed to Estimate the Cylinder-to-Cylinder Injection Variations - Part 1 - Time Domain Analysis

2016-11-08
2016-32-0081
For the development of a very high efficiency engine, the continuous monitoring of the engine operating conditions is needed. Moreover, the early detection of engine faults is fundamental in order to take appropriate corrective actions and avoid malfunctioning and failures. The in-cylinder pressure is the most direct parameter associated to the engine thermodynamic cycle. The cost and the intrusiveness of the dynamic pressure sensor and the harsh operating condition that limits its life-time, make the direct measurement of the in-cylinder pressure not suitable for mass production applications. Consequently, research is oriented on the measurement of physical phenomena linked to the thermodynamic cycle to obtain useful information for the ICE control.
Technical Paper

Experimental Acoustic Analysis of a Motorcycle Dissipative Muffler in Presence of Mean Flow

2016-11-08
2016-32-0039
In recent years, the motorcycle muffler design is moving to dissipative silencer architectures. Due to the increased of restrictions on noise emissions, both dissipative and coupled reactive-dissipative mufflers have substituted the most widely used reactive silencers. This led to higher noise efficiency of the muffler and size reduction. A dissipative muffler is composed by a perforated pipe that crosses a cavity volume filled by a fibrous porous material. The acoustic performance of this kind of muffler are strictly dependent on the porosity of the perforated pipe and the flow resistivity characteristic of the porous material. However, while the acoustic performance of a reactive muffler is almost independent from the presence of a mean flow for typical Mach numbers of exhaust gases, in a dissipative muffler the acoustic behaviour is strictly linked to the mass flow rate intensity.
Technical Paper

Indirect Estimation of In-Cylinder Pressure through the Stress Analysis of an Engine Stud

2016-04-05
2016-01-0814
The increase of performance has always been a key topic of the research activities on the internal combustion engines. Nowadays this is even truer as the performance is strictly correlated to the pollutant emissions. In this sense, an interesting approach could be the improvement of the effectiveness of engine control system and optimize the combustion process. To pursue this goal it would be very important to know the in-cylinder pressure during engine operation. The measurement of this quantity is performed generally with a pressure sensor flush mounted on the cylinder head. The measurement is very accurate, but the severe ambient conditions strongly limit the lifetime of these sensors, which, therefore, are not well suited to act as a feedback to the control system of on-road engines. Even though several approaches to measure indirectly the in-cylinder pressure have been developed, their diffusion is still hampered by reliability and sturdiness problems.
Technical Paper

Detection of Cylinder-to-Cylinder Injection Variation in a Four-Stroke Diesel Engine by Monitoring the Turbocharger Speed

2015-11-17
2015-32-0761
In order to ensure a high level of performance and to comply with more severe limitations in term of fuel consumption and emissions reduction, a continuous supervision of the engine operating conditions, by monitoring several parameters, is needed. The growing use of turbocharger (TC) in ICE for automotive and industrial applications suggests to use the TC speed as a possible feedback of engine operating condition. Indeed, the turbocharger behavior is connected to the thermo-dynamic and fluid-dynamic conditions at the engine cylinder exit: this feature suggests that the turbocharger speed could give useful information about the engine cycle. In previous studies, a preliminary investigation of the relationship between the engine performance and the turbocharger speed of a four-stroke multi-cylinder turbo-diesel engine was carried out by varying the operating conditions of the engine such as fuel mass flow rate, EGR rate and back pressure at the turbine outlet.
Journal Article

Numerical Investigation of the Relationship between Engine Performance and Turbocharger Speed of a Four Stroke Diesel Engine

2014-11-11
2014-32-0126
A condition monitoring activity consists in the analysis of several information from the engine and the subsequent data elaboration to assess its operating condition. By means of a continuous supervision of the operating conditions the internal combustion engine performance can be maintained at design-level in the long term. The growing use of turbocharger (TC) in automotive field suggests to use the TC speed as a possible feedback of engine operating condition. Indeed, the turbocharger behavior is influenced by the thermo and fluid-dynamic conditions in the cylinder exhaust port: this feature suggests that the TC speed could provide useful data about the engine cycle. In this study the authors describe a theoretical and numerical analysis focused on the TC speed in a four stroke turbo-diesel engine. The purpose of this study is to highlight whether the TC speed allows one to detect the variation of the engine parameters.
Technical Paper

Acoustic Characterization of Automotive Mufflers - Part I: Test Rig Design and Evaluation of Acoustic Properties

2012-04-16
2012-01-0800
In current automotive research, increasing attention is being paid to the design of mufflers due to the lower noise levels which have been established by the acoustic international standards. The traditional design approaches are no longer sufficient to meet the standards and more refined techniques are necessary. Within this context, a specific test rig was built at the Energy Engineering Department of the University of Florence to analyze the acoustic characteristics of both industrial mufflers and simplified models. In particular, the latter is commonly used to investigate in detail the physical phenomena connected to the acoustic response of these disposals and to calibrate numerical models. The test rig operates at ambient condition with no flow.
Technical Paper

Acoustic Characterization of Automotive Mufflers - Part II: Validation of the Numerical Models by Means of Experimental Data

2012-04-16
2012-01-0801
Increasing interest is being paid to noise pollution of internal combustion engines and as a result, recent international standards imposed more severe limitations to acoustic emissions on engine manufacturers. In particular, the noise coming from gas-dynamic interactions has an important influence in determining the final noise level of the engine; as a consequence, the muffler design is currently being considered as one of the most important research threads for engine companies. Within this context, the 1D approach to numerical simulations, which has been successfully applied by industrial designers to the fluid-dynamic design of the engine, is considered to be inaccurate in the evaluation of the acoustic behavior of the muffler for medium-high frequencies. On the other hand, an extension of the applicability of these codes in the medium-high frequencies would be desirable.
X