Refine Your Search

Search Results

Author:
Viewing 1 to 7 of 7
Technical Paper

Injury Risk Curves for the Human Cervical Spine from Inferior-to-Superior Loading

2018-11-12
2018-22-0006
Cervical spine injuries can occur in military scenarios from events such as underbody blast events. Such scenarios impart inferior-to-superior loads to the spine. The objective of this study is to develop human injury risk curves (IRCs) under this loading mode using Post Mortem Human Surrogates (PMHS). Twenty-five PMHS head-neck complexes were obtained, screened for pre-existing trauma, bone densities were determined, pre-tests radiological images were taken, fixed in polymethylmethacrylate at the T2-T3 level, a load cell was attached to the distal end of the preparation, positioned end on custom vertical accelerator device based on the military-seating posture, donned with a combat helmet, and impacted at the base. Posttest images were obtained, and gross dissection was done to confirm injuries to all specimens. Axial and resultant forces at the cervico-thoracic joint was used to develop the IRCs using survival analysis.
Technical Paper

Human Foot-Ankle Injuries and Associated Risk Curves from Under Body Blast Loading Conditions

2017-11-13
2017-22-0006
Under body blast (UBB) loading to military transport vehicles is known to cause foot-ankle fractures to occupants due to energy transfer from the vehicle floor to the feet of the soldier. The soldier posture, the proximity of the event with respect to the soldier, the personal protective equipment (PPE) and age/sex of the soldier are some variables that can influence injury severity and injury patterns. Recently conducted experiments to simulate the loading environment to the human foot/ankle in UBB events (~5ms rise time) with variables such as posture, age and PPE were used for the current study. The objective of this study was to determine statistically if these variables affected the primary injury predictors, and develop injury risk curves. Fifty below-knee post mortem human surrogate (PMHS) legs were used for statistical analysis. Injuries to specimens involved isolated and multiple fractures of varying severity.
Technical Paper

Biomechanical Response of Military Booted and Unbooted Foot-Ankle-Tibia from Vertical Loading

2016-11-07
2016-22-0010
A new anthropomorphic test device (ATD) is being developed by the US Army to be responsive to vertical loading during a vehicle underbody blast event. To obtain design parameters for the new ATD, a series of non-injurious tests were conducted to derive biofidelity response corridors for the foot-ankle complex under vertical loading. Isolated post mortem human surrogate (PMHS) lower leg specimens were tested with and without military boot and in different initial foot-ankle positions. Instrumentation included a six-axis load cell at the proximal end, three-axis accelerometers at proximal and distal tibia, and calcaneus, and strain gages. Average proximal tibia axial forces for a neutral-positioned foot were about 2 kN for a 4 m/s test, 4 kN for 6 m/s test and 6 kN for an 8 m/s test. The force time-to-peak values were from 3 to 5 msec and calcaneus acceleration rise times were 2 to 8 msec.
Technical Paper

Effect of Head-Restraint Rigidity on Whiplash Injury Risk

2004-03-08
2004-01-0332
The present study investigated the effects of the structural stiffness of the head restraint and its attachment rigidity on the biomechanical responses and related injury measures of the neck in a rear impact vehicular collision. A series of simulated rear impacts were conducted using a mid-sized male test dummy seated in a modified late-model front passenger seat on a deceleration crash sled with a FMVSS 202 pulse. Preliminary results demonstrated that a more rigid head restraint in its design and attachment produced lesser values in most biomechanical injury measures such as neck shear force, neck extension bending moment, tension-extension neck injury criterion (Nij), shear-moment neck injury criterion (Nkm), and head-torso relative extension angular displacement. This is true for a wide range of seatback recliner stiffness. This suggests that a more rigid head restraint may have a protective advantage over a more pliant one for the neck in a rear impact.
Technical Paper

Comparison of Three Rotation Measurement Techniques in Rear Impact Application

2003-03-03
2003-01-0174
Three different measurement methods for angular displacement (rotation) of a dummy head and torso were evaluated in a rear impact crash environment. The data were collected using a Hybrid III 50th percentile male dummy in rear impact sled tests tuned to the FMVSS 202 deceleration pulse. Angular rate sensors yielded rotation data closely matching the results from high-speed digital video images to within 3 degrees with a total displacement range up to 110 degrees. Linear acceleration data generally yield less accurate angular displacement results, in addition to being cumbersome in data processing.
Technical Paper

Dynamic Characteristics of the Human Cervical Spine

1995-11-01
952722
This paper presents the experimental dynamic tolerance and the force-deformation response corridor of the human cervical spine under compression loading. Twenty human cadaver head-neck complexes were tested using a crown impact to the head at speeds from 2.5 m/s to 8 m/s. The cervical spine was evaluated for pre-alignment by using the concept of the stiffest axis. Mid cervical column (C3 to C5) vertebral body wedge, burst, and vertical fractures were produced in compression. Posterior ligament tears in the lower column occurred under flexion. Anterior longitudinal ligament tears and spinous process fractures occurred under extension. Mean values were: force at failure, 3326 N; deformation at failure, 18 mm; stiffness, 555 N/mm. The deformation at failure parameter was associated with the least variance and should describe the most accurate tolerance measure for the population as a whole.
Technical Paper

Biomechanical Analysis of Tractor Induced Head Injury

1994-09-01
941726
Head injury is a serious threat to lives of people working around farm machinery. The consequence of head injuries are costly, paralytic, and often fatal. Clinical and biomechanical data on head injuries are reviewed and their application in the analysis of head injury risk associated with farm tractor discussed. A significant proportion of tractor-related injuries and deaths to adults, as well as children, is due directly or indirectly to head injury. An improved injury reporting program and biomechanical studies of human response to tractor rollover, runover, and falls, are needed to understand mechanisms of the associated head injury.
X