Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of a Luxury Vehicle Acoustic Package using SEA Full Vehicle Model

2003-05-05
2003-01-1554
Interior noise has become a significant performance attribute in modern passenger vehicles and this is extremely important in the luxury market segment where a quiet interior is the price of entry. With the elimination of early prototype vehicles to reduce development costs, high frequency analytical SEA models are used to design the vehicle sound package to meet targets for interior noise quality. This function is important before representative NVH prototypes are available, and later to support parameter variation investigations that would be cost prohibitive in a hardware test. This paper presents the application of an analytical full vehicle SEA model for the development of the acoustic package of a cross over luxury utility vehicle. The development concerns addressed were airborne powertrain noise and road noise. Power flow analysis was used to identify the major noise paths to the interior of the vehicle.
Technical Paper

Transmission Loss for Vehicle Sound Packages with Foam Layers

1999-05-17
1999-01-1670
The high-frequency performance of automotive sound packages may be predicted by combining transmission loss and absorption calculations with statistical energy analysis (SEA) models. Vehicle SEA modeling therefore requires analytical tools that accurately describe the acoustic properties of layered structures such as trim panels. While widely accepted prediction models for fibrous materials exist, less work has been done on foam layers. This paper presents a numerical calculation of sound transmission through layered structures using a direct global matrix (DGM) solution. This numerical technique is used to compare several models for acoustic propagation in foams. Predictions are compared to transmission loss measurements for several panel configurations. A rigid porous model compares well with data up to 1 kHz for the foams studied, while foam elasticity appears to be important at higher frequencies.
X