Refine Your Search

Search Results

Author:
Viewing 1 to 14 of 14
Technical Paper

Emissions Solutions for 2007 and 2010 Heavy-Duty Diesel Engines

2004-03-08
2004-01-0124
Manufacturers of heavy-duty diesel engines for sale in the United States face an unprecedented reduction in emissions in 2007 and in 2010. Compared to today's levels, a 90% reduction in particulate matter (PM) must be achieved by 2007, and a 90% reduction in nitric oxides (NOx) must be achieved by 2010. This paper focuses on the technology solutions possible for engine makers for the interim 2007-2009 timeframe and discusses the additional NOx reduction strategies for a 2010 compliant engine. The possibility of achieving a larger portion of the interim 2007-2009 NOx standard through in-cylinder control methods rather than by NOx exhaust treatment is discussed. High levels of exhaust gas recirculation (EGR) and advanced injection strategies to modify the conventional diesel combustion process are just two processes that can be accommodated in many of today's engine designs.
Technical Paper

The Heavy-Duty Gasoline Engine - An Alternative to Meet Emissions Standards of Tomorrow

2004-03-08
2004-01-0984
A technology path has been identified for development of a high efficiency, durable, gasoline engine, targeted at achieving performance and emissions levels necessary to meet heavy-duty, on-road standards of the foreseeable future. Initial experimental and numerical results for the proposed technology concept are presented. This work summarizes internal research efforts conducted at Southwest Research Institute. An alternative combustion system has been numerically and experimentally examined. The engine utilizes gasoline as the fuel, with a combination of enabling technologies to provide high efficiency operation at ultra-low emissions levels. The concept is based upon very highly-dilute combustion of gasoline at high compression ratio and boost levels. Results from the experimental program have demonstrated engine-out NOx emissions of 0.06 g/hp/hr, at single-cylinder brake thermal efficiencies (BTE) above thirty-four percent.
Technical Paper

An Experimental Investigation of PCCI-DI Combustion and Emissions in a Heavy-Duty Diesel Engine

2003-03-03
2003-01-0345
An experimental investigation of partial premixed charge compression ignition (PCCI) in combination with direct fuel injection was conducted on a Caterpillar C-15 heavy-duty diesel engine (HDDE). The intent of the program was to investigate the performance, emissions, and efficiency characteristics of the concept. A portion of the fuel was delivered to the intake manifold using air-assist port fuel injectors. The spray droplet characteristics were measured, for several different injector geometries, over a range of thermodynamic conditions. Subsequently, the optimized port fuel injector (PFI) was utilized in the engine tests. The engine tests were run at conditions ranging from 1200 - 1800 RPM, loads ranging from 25 - 75%, and PFI quantities ranging from approximately 10 - 70%. The tests showed that oxides of Nitrogen (NOX) emissions did not decrease dramatically with partial premixing.
Technical Paper

The Effects of Fuel Properties on Emissions from a 2.5gm NOx Heavy-Duty Diesel Engine

1998-10-19
982491
The engine selected for this work was a Caterpillar 3176 engine. Engine exhaust emissions, performance, and heat release rates were measured as functions of engine configuration, engine speed and load. Two engine configurations were used, a standard 1994 design and a 1994 configuration with EGR designed to achieve a NOx emissions level of 2.5 gm/hp-hr. Measurements were performed at 7 different steady-state, speed-load conditions on thirteen different test fuels. The fuel matrix was statistically designed to independently examine the effects of the targeted fuel properties. Cetane number was varied from 40 to 55, using both natural cetane number and cetane percent improver additives. Aromatic content ranged from 10 to 30 percent in two different forms, one in which the aromatics were predominantly mono-aromatic species and the other, where a significant fraction of the aromatics were either di- or tri-aromatics.
Technical Paper

Development of an Ethanol-Fueled Ultra-Low Emissions Vehicle

1998-05-04
981358
A 1993 Ford Taurus Flexible Fuel Vehicle (FFV) designed to operate on gasoline or methanol has been modified to run on Ed85 (85 vol.% denatured ethanol, 15 vol.% gasoline) and has demonstrated the ability to meet California's Ultra-Low Emissions Vehicle (ULEV) standards. The vehicle maintains the excellent driveability with potentially increased performance and similar efficiency to the baseline vehicle. Using standard twin OEM catalysts, FTP-75 emissions were 0.085 g/mi NOx, 0.88 g/mi CO, and 0.039 g/mi reactivity-adjusted NMOG. Using close-coupled catalysts upstream of the OEM catalysts, FTP-75 emissions were 0.031 g/mi NOx, 0.297 g/mi CO, and 0.015 g/mi reactivity-adjusted NMOG. The catalysts were aged to about 4,000 miles of equivalent use. These emissions compare with ULEV standards of 0.2 g/mi NOx, 1.7 g/mi CO, and 0.04 g/mi NMOG at 50,000 miles of use.
Technical Paper

Modeling NOx Emissions from Lean-Burn Natural Gas Engines

1998-05-04
981389
A zero-dimensional cycle simulation model coupled with a chemical equilibrium model and a two-zone combustion model has been extended to predict nitric oxide formation and emissions from spark-ignited, lean-burn natural gas engines. It is demonstrated that using the extended Zeldovich mechanism alone, the NOx emissions from an 8.1-liter, 6-cylinder, natural gas engine were significantly under predicted. However, by combining the predicted NOx formation from both the extended Zeldovich thermal NO and the Fenimore prompt NO mechanisms, the NOx emissions were predicted with fair accuracy over a range of engine powers and lean-burn equivalence ratios. The effect of injection timing on NOx emissions was under predicted. Humidity effects on NOx formation were slightly under predicted in another engine, a 6.8-liter, 6-cylinder, natural gas engine. Engine power was well predicted in both engines, which is a prerequisite to accurate NOx predictions.
Technical Paper

Reduced Cold-Start Emissions Using Rapid Exhaust Port Oxidation (REPO) in a Spark-Ignition Engine

1997-02-24
970264
An emissions reduction strategy was developed and demonstrated to significantly reduce cold-start hydrocarbon (HC) and CO emissions from a spark ignition (SI), gasoline-fueled engine. This strategy involved cold-starting the engine with an ultra-fuel rich calibration, while metering near-stoichiometric fractions of air directly into the exhaust ports. Using this approach, exhaust constituents spontaneously ignited at the exhaust ports and burned into the exhaust manifold and exhaust pipe leading to the catalytic converter. The resulting exotherm accelerated catalyst heating and significantly decreased light-off time following a cold-start on the FTP-75 with a Ford Escort equipped with a 1.9L engine. Mass emissions measurements acquired during the first 70 seconds of the FTP-75 revealed total-HC and CO reductions of 68 and 50 percent, respectively, when compared to baseline measurements.
Technical Paper

A PC-Based Model for Predicting NOx Reductions in Diesel Engines

1996-10-01
962060
A menu-driven, PC-based model, ALAMO_ENGINE, has been developed to predict the nitrogen oxides (NOx) reductions in direct-injected, diesel engines due to exhaust gas recirculation (EGR), emulsified fuels, manifold or in-cylinder water injection, fuel injection timing changes, humidity effects, and intake air temperature changes. The approach was to use a diesel engine cycle simulation with detailed gas composition calculations for the intake and exhaust gases (including EGR, water concentration, fuel-type effects, etc.), coupled with a code to calculate stoichiometric, adiabatic flame temperatures and expressions that correlate measured NOx emissions with the flame temperature. Execution times are less than 10 seconds on a 486-66 MHz PC.
Technical Paper

Estimates of Fuel Evaporation: Bench Experiments and In-Cylinder

1995-02-01
950446
A relatively simple, commercially available, PC-based, dilute-spray model called TESS (Trajectory and Evaporation of Spray Systems) has been used to estimate methanol evaporation rates and drop-size evolution in bench experiments, and compared with measurements by McDonell and Samuelsen(1). Using measured initial conditions, the TESS model correlates well with the drop-size evolution for instruments using both number-flux-weighted sampling and number-density-weighted sampling, except close to the atomizer where the dilute spray assumptions do not apply. The amount of fuel evaporated at 100 mm from the atomizer is over-predicted (as expected for a dilute spray model) by 29 percent, but is within the experimental measurement error. The model is then used to estimate ethanol spray behavior in an intake manifold of a spark-ignition engine during cold-start.
Technical Paper

Investigation of Diesel Spray Structure and Spray/Wall Interactions in a Constant Volume Pressure Vessel

1994-10-01
941918
High-speed movie films, and laser-diffraction drop sizing were used to evaluate the structure, penetration rate, cone angle, and drop size distribution of diesel sprays in a constant volume pressure vessel. As further means of evaluating the data, comparisons are made between the film measurements, and calculations from a dense gas jet model. In addition to the high-speed film data that describes the overall structure of the spray as a function of time, a laser diffraction instrument was used to measure drop size distribution through a cross-section of the spray. In terms of the growth of the total spray volume (a rough measure of the amount of air entrained in the spray), spray impingement causes an initial delay, but generally the same overall growth rate as an equivalent unimpeded spray. Agreement between measurements and calculations is excellent for a diesel spray with a 0.15 mm D orifice and relatively high injection pressures.
Technical Paper

Effects of Different Injector Hole Shapes on Diesel Sprays

1992-02-01
920623
Twelve different hole shapes for diesel injector tips were characterized with DF-2 diesel fuel for spray cone angle over a range of injection pressures from 21 MPa (3 kpsi) to 69 MPa (10 kpsi). A baseline and two of the most radical designs were also tested for drop-size distribution and liquid volume fraction (liquid fuel-air ratio) over a range of pressures from 41 MPa (6 kpsi) to 103 MPa (15 kpsi). All hole shapes were circular in cross-section with minimum diameters of 0.4 mm (0.016 in.), and included converging and diverging hole shapes. Overall hole lengths were constant at 2.5 mm (0.098 in.), for an L/d of 6.2. However, the effective L/d may have been less for some of the convergent and divergent shapes.
Technical Paper

Improved Atomization of Methanol for Low-Temperature Starting in Spark-Ignition Engines

1992-02-01
920592
Heating neat (100 percent) methanol fuel (M100) is shown to improve dramatically the atomization of the fuel from a production, automotive, port fuel injector of pintle design. This improvement is particularly noticeable and important when compared with atomization at low fuel temperatures, corresponding to those conditions where cold-start is a significant problem with neat methanol-fueled (M100) vehicles. The improved atomization is demonstrated with photographs and laser-diffraction measurements of the drop-size distributions. Fuel temperatures were varied from -34°C (-29°F to 117°C (243°F), while the boiling point of methanol is 64.7°C (148.5°F). Air temperatures were ambient at about 24°C (75°F). For temperatures above the boiling point, some flash boiling and vaporization were presumably occurring, and these may have contributed to the atomization, but the trends for drop size did not shown any discontinuity near the boiling point.
Technical Paper

Effects of Fuel Properties on Diesel Spray Characteristics

1987-02-01
870533
Several diesel injection systems were selected for evaluating the effects of fuel properties on diesel spray characteristics. Fuel properties that were examined were viscosity and specific gravity. The selected injection systems were operated on nine test fuels covering a broad range of viscosity and specific gravity. High-speed movies were taken of the fuels being injected into a high-pressure environment. Penetration and cone angle data were reduced from the movies and used as a basis for fuel-to-fuel comparisons. In addition, drop size distribution data were obtained for one injection system operating on four fuels with different viscosities. Fuel viscosity was found to have an effect on spray tip penetration. For a pintle-type nozzle as fuel viscosity increased, the tip penetration rate decreased. Tip penetration rate from a pressure time injection system was proportional to the fuel viscosity, in that as viscosity increased, tip penetration increased.
Technical Paper

Injection, Atomization and Combustion of Carbon Slurry Fuels

1982-02-01
821199
Three different carbon blacks were used to formulate nine different slurries in DF-2. The rheological properties of each formulation were examined to determine deviations from Newtonian behavior. The spray characteristics of selected formulations were then examined in a high-pressure, high-temperature injection bomb. The cone angle decreased and the penetration rates increased for all of the slurries tested as compared to straight DF-2. These changes were more pronounced as the concentration of carbon black increased. Six formulations of three types of carbon black were tested in a single-cylinder, direct-injection CLR engine. Apparent heat release rates were computed as a function of crankangle from the cylinder pressure data. Based on the engine performance tests and some limited durability testing it appears that well-formulated carbon black slurries have only minor effects on engine performance and durability.
X