Refine Your Search

Search Results

Journal Article

Status of Developing a Near Real-Time Capability for Estimating Space Radiation Exposure Using EMMREM

2009-07-12
2009-01-2340
The central objective of the Earth-Moon-Mars Radiation Environment Module (EMMREM) project is to develop and validate a numerical module for completely characterizing time-dependent radiation exposure in the Earth-Moon-Mars and Interplanetary space environments. An important step in the process of building this system is the development of the interfaces between EMMREM's internal components, many of which have existed previously as stand-alone simulation codes. This work specifically discusses the development and implementation of the interface, primarily using the Perl scripting language, between two input data set generators, one of which describes the space radiation environment at some desired location, and a space radiation transport and shielding code, BRYNTRN, that provides estimates at fairly short time intervals of dose and dose equivalent behind shielding.
Journal Article

Shielding Effectiveness of Sodium Alanate and Ammonia Borane for Galactic Cosmic Ray and Solar Energetic Particle Event Environments

2008-06-29
2008-01-2163
Estimates of the effectiveness of the high-hydrogen containing materials, sodium alanate and ammonia borane, are made by calculating dose and dose equivalent for the 1977 solar minimum and 1970 solar maximum galactic cosmic ray spectra and for the large solar particle event spectra from the space era event of August 1972 and comparing their shielding effectiveness with that of polyethylene.
Technical Paper

Structural and Radiation Shielding Properties of Non-parasitic, Multi-functional Microporous Carbon for Aerospace Applications

2007-07-09
2007-01-3111
AFR, Inc. is developing a multifunctional Carbon material that, in addition to excellent radiation shielding characteristics, is appropriate for certain energy storage applications. As an excellent Hydrogen gas sorbent, it increases the usable storage capacity of a gas cylinder by ∼25% at 3500 PSI and by ∼150% at 500 PSI. Our ongoing NASA Langley funded study shows that when a sorbent-filled tank is charged with hydrogen, it provides shielding superior to polyethylene against most types of ionizing particles. Even as hydrogen is consumed, the carbon and tank ensure that significant radiation shielding capability is maintained. In addition to storing hydrogen, the carbon material also displays considerable strength. In this paper, we explore some of its mechanical properties that show this material is very versatile and highly multifunctional.
Technical Paper

LET Spectra of Iron Particles on A-150: Model Predictions for the CRaTER Detector

2007-07-09
2007-01-3113
The Lunar Orbiter Mission (LRO) is scheduled to launch at the end of 2008. It will carry different instruments to explore a variety of aspects on the Moon's surface. One of the goals of the LRO is to characterize the lunar radiation environment and its biological impacts on humans. For this purpose a collaboration involving research personnel from Boston University, Massachusetts Institute of Technology, The University of Tennessee, The Aerospace Corporation, Air Force Research Laboratory, and the NOAA Space Environment Center successfully proposed to develop a sensor system called the Cosmic Ray Telescope for the Effects of Radiation (CRaTER). CRaTER will be used to examine the Linear Energy Transfer (LET) spectra of solar particle events (SPE) and galactic cosmic radiation (GCR) in Tissue Equivalent Plastic (A-150) material.
Technical Paper

Radiation Shielding and Mechanical Strength Evaluations of Non-parasitic, Multi-functional Microporous Carbon for Aerospace Applications

2006-07-17
2006-01-2104
AFR, Inc. is developing a multifunctional Carbon material that, in addition to excellent radiation shielding characteristics, is appropriate for certain energy storage applications. As an excellent Hydrogen gas sorbent, it increases the usable storage capacity of a gas cylinder by ∼25% at 3500 PSI and by ∼150% at 500 PSI. Our ongoing NASA Langley funded study shows that when a sorbent-filled tank is charged with hydrogen, it provides shielding superior to polyethylene against most types of ionizing particles. Even as hydrogen is consumed, the carbon and tank ensure that significant radiation shielding capability is maintained. Vastly improved radiation shielding is a clear requirement for a potential manned mission to Mars or a long-duration base on the surface of the Moon. However, current shielding technologies are predicated upon systems dedicated solely to the task of shielding.
Technical Paper

LET Spectra of High Energy Proton Beam on A-150: Model Predictions for the CRaTER Detector

2006-07-17
2006-01-2145
Doses to human crews in interplanetary space from energetic Solar Particle Events (SPE) are of a special concern for future lunar missions. The Lunar Reconnaissance Orbiter (LRO) mission, scheduled to launch by the end of 2008 into Lunar orbit, will conduct several exploratory objectives, one of which is characterizing the lunar radiation environment and its biological impacts on humans. Research is currently being conducted for the purpose of developing a sensor system to be flown on the LRO called the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) to measure the Linear Energy Transfer (LET) Spectra of SPE, providing a link between the Moon’s radiation environment and its biological impact on humans.
Technical Paper

Parametric Shielding Strategies for Jupiter Magnetospheric Missions

2005-07-11
2005-01-2834
Judicious shielding strategies incorporated in the initial spacecraft design phase for the purpose of minimizing deleterious effects to onboard systems in intense radiation environments will play a major role in ensuring overall mission success. In this paper, we present parametric shielding analyses for the three Jupiter Icy Moons, Callisto, Ganymede, and Europa, as a function of time in orbit at each moon, orbital inclination, and various thicknesses, for low- and high-Z shielding materials. Trapped electron and proton spectra using the GIRE (Galileo Interim Radiation Electron) environment model were generated and used as source terms to both deterministic and Monte Carlo high energy particle transport codes to compute absorbed dose as a function of thickness for aluminum, polyethylene, and tantalum. Extensive analyses are also presented for graded-Z materials.
Technical Paper

Sensitivity of Solar Energetic Particle Event Doses to Spectral Hardness

2005-07-11
2005-01-2830
Doses in critical body organs of human crews in interplanetary space from energetic solar particle events (SPE) vary widely with the size and spectral hardness of the event. In this work, we present a study of the sensitivities of calculated doses to the skin, ocular lens of the eye, and bone marrow, for crewmembers in deep space, to variations in solar energetic particle event fluence levels and spectral hardness. The calculations are performed by incrementally varying the fluence levels and spectral hardness and tracking changes in organ doses as a function of these variations. For simplicity in interpreting the results, we use the rigidity parameterization form for the SPE integral fluences. It was found that for harder spectra the doses are much larger and decrease less rapidly with increased shielding.
Technical Paper

Using Artificial Intelligence Methods to Predict Doses from Large Solar Particle Events in Space

2004-07-19
2004-01-2324
When planning space missions, radiation effects due to large solar particle events (SPEs) can become a major concern since doses can become mission threatening to both the crew and the spacecraft electronic components. As mission duration increases, the possibility that a significant dose is delivered also increases, especially during the more active parts of the solar cycle. Therefore, a method of predicting when certain limiting doses will be reached following the onset of a large SPE needs to be available. Typical dose versus time profiles of a SPE can be represented by a Weibull functional form, which is comprised of three unknown parameters. Since these dose-time profiles are nonlinear functions, the use of artificial neural networks as the forecasting mechanism is ideal.
Technical Paper

Solar Energetic Particle Event Doses in LEO: Sensitivities to Event Spectra, Orbital Parameters, and Geomagnetic Field Conditions

2004-07-19
2004-01-2325
This paper presents a study of the sensitivities of calculated doses to the skin, ocular lens of the eye and bone marrow, for crewmembers in low Earth orbit, to variations in solar energetic particle event fluence levels and spectral hardness, spacecraft orbital inclination, geomagnetic field storm levels (Kp index), and spacecraft shielding thickness. In general, doses increase for higher inclination orbits, for higher Kp indices, and for harder SPE spectra. The predicted doses sometimes change dramatically for even small variations in the assumed conditions. For large events in high inclination orbits, with a highly disturbed geomagnetic field, doses can be very hazardous to crews.
Technical Paper

Depth Dose Exposures in the Magnetosphere of Jupiter at the Icy Moons: Callisto, Ganymede, and Europa

2004-07-19
2004-01-2326
The highly successful Galileo mission made a number of startling and remarkable discoveries during its eight-year tour in the harsh Jupiter radiation environment. Two of these revelations were: 1) salty oceans lying under an icy crust of the Galilean moons: Europa, Ganymede and Callisto, and 2) the possible existence or remnants of life, especially on Europa, which has a very tenuous atmosphere of oxygen. Galileo radiation measurement data from the Energetic Particle Detector (EPD) have been used (Garrett et al., 2003) to update the trapped electron environment model, GIRE: Galileo Interim Radiation Environment, in the range of L (L: McIlwain parameter – see ref. 6) = 8–16 Rj (Rj: radius of Jupiter ≈ 71,400 km) with plans to extend the model for both electrons and protons as more data are reduced and analyzed.
Technical Paper

Variations in Organ Doses Resulting from Solar Energetic Particle Event Spectrum Uncertainties

2003-07-07
2003-01-2349
The effects of uncertainties in published proton fluence spectra for large solar particle events (SPE) on organ dose estimates are largely unknown since uncertainties in the measured spectra are unknown. In this work, input spectra for several large SPEs are adjusted by as much as 50% to account for the spectrum uncertainties. The BRYNTRN space radiation transport code and CAM human geometry model are used to perform the calculations. The calculations are made assuming three organ doses and four nominal thicknesses of spacecraft aluminum shielding. Discussions of dose variations for several events based on different spectrum uncertainty values are presented.
Technical Paper

Variations in Organ Doses Resulting from Different Solar Energetic Particle Event Spectrum Parameterizations

2003-07-07
2003-01-2352
Calculations of solar energetic particle event (SPE) doses typically utilize SPE proton spectra parameterized with either an exponential in rigidity (momentum per unit charge) or a Weibull form in energy. In this work we report organ doses calculated using these two different parameterizations of proton spectra of four large solar energetic particle events. They are the SPEs of August 4, 1972, August 12, 1989, September 29, 1989 and October 19, 1989. The variations in predicted doses to critical organs introduced by the use of these two parameterizations for these large events could be a factor in evaluating the effectiveness of spacecraft shielding. Events similar to the largest SPEs observed during the space age could deliver large organ doses and the potential for an acute radiation syndrome response in interplanetary crews.
Technical Paper

Worst Case Solar Energetic Particle Events for Deep Space Missions

2001-07-09
2001-01-2330
Over the past two decades, various models of “worst case” solar energetic particle event (SPE) spectra have been proposed in order to place an upper bound on the likely doses to critical body organs of astronauts on missions outside Earth’s geomagnetic field. In this work, direct comparisons of organ dose estimates for various models of “worst case” SPE spectra are made by using the same transport code (BRYNTRN) and the same human geometry model (Computerized Anatomical Man). The calculations are made assuming nominal thicknesses of spacecraft aluminum shielding. Discussions of possible acute exposure responses from these exposures are presented.
Technical Paper

Anatomical Modeling Considerations for Calculating Organ Exposures in Space

2000-07-10
2000-01-2412
Typical calculations of radiation exposures in space approximate the composition of the human body by a single material, typically Aluminum or water. A further approximation is made with regard to body size by using a single anatomical model to represent people of all sizes. A comparison of calculations of organ dose and dose-equivalent is presented. Calculations are first performed approximating body materials by water equivalent thickness', and then using a more accurate representation of materials present in the body. In each case of material representation, a further comparison is presented of calculations performed modeling people of different sizes.
Technical Paper

Predicting Astronaut Radiation Doses From Large Solar Particle Events Using Artificial Intelligence

1999-07-12
1999-01-2172
For deep space missions, a major concern is the occurrence of large solar particle events. In this work a dynamic, new type of artificial neural network called a Sliding Time Delay Neural Network that is capable of accurately predicting total dose for an event, from several input doses early in the event, is presented. The network can update its total dose predictions during the event as new input data are received. Results from testing indicate that the network can predict total doses from large events that are outside the training set to within 4% very early in the event.
Technical Paper

Solar Flare Protection for Manned Lunar Missions: Analysis of the October 1989 Proton Flare Event

1991-07-01
911351
Several large solar proton events occurred in the latter half of 1989. For a moderately shielded spacecraft in free space, the potential exposure would have been greatest for the flare which occurred between October 19 to 27, 1989. This flare was comparable to the large flare event of August 1972. The temporal variations of the proton energy spectra at approximately 1 AU were monitored by the GOES-7 satellite. These data, recorded and processed at the NOAA-Boulder Space Environment Laboratory, provide the opportunity to analyze dose rates and cumulative doses which might be incurred by astronauts in transit to, or on, the moon. Of particular importance in such an event is the time development of exposure in the early phases of the flare, for which dose rates may range over many orders of magnitude in the first few hours. Consequently, special attention is given to the early time variation of the dose rate.
Technical Paper

Let Analyses of Biological Damage During Solar Particle Events

1991-07-01
911355
Solar particle events (SPE) are typically dominated by high-energy, low-linear energy transfer (LET) protons. Biological damage to astronauts during an SPE is expected to include a large contribution from high LET target fragments produced in nuclear reactions in tissue. We study the effects of nuclear reactions on integral LET spectra, behind typical levels of spacecraft and body shielding, for the historically largest flares using the high-energy transport code, BRYNTRN in conjunction with several biological damage models. The cellular track model of Katz provides an accurate description of cellular damage from heavy ion exposure. The track model is applied with BRYNTRN to provide an LET decomposition of survival and transformation rates for solar proton events.
Technical Paper

Deep-Space Radiation Exposure Analysis for Solar Cycle XXI (1975-1986)

1990-07-01
901347
Ionizing radiation exposures and associated dosimetric quantities are evaluated for the 11-year solar cycle ending in 1986. Solar flare fluences for the 55 largest flares occurring during the cycle are superimposed on the galactic cosmic ray flux. Published summaries of flare data from the Interplanetary Monitoring Platform (IMP)-7 and IMP-8 satellites are used and include flares whose integrated fluences are greater than 107 protons/cm2 for energies in excess of 10 MeV. A standard cosmic ray environment model for ion flux values at solar minimum and maximum is invoked with an assumed sinusoidal variation between the lower and upper limits. The radiation shielding analysis is carried out for equivalent water-shield thicknesses between 2 and 15 g/cm2. Results are expressed in terms of cumulative incurred dose equivalents for deep-space missions lasting between 3 months and 3 years.
X