Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Performance of Two/Four Stroke Gasoline HCCI Engine with Electromagnetic Valve Train

2007-07-23
2007-01-1868
Comparison of net thermal efficiency and emission in two and four stroke gasoline HCCI engine has been carried out for various valve-timings as negative valve overlap and exhaust valve double opening. The valve timings could easily be converted from a mode to another by configuring schedule of electromagnetic valve-train. Extension of operable torque with high thermal efficiency had been expected in two-stroke HCCI operation, however friction and supercharger loss curtailed about half of the gain in indicated thermal efficiency. In four-stroke operation modes, exhaust valve double opening (‘reinduction’ or ‘rebreathing’) showed the best net thermal efficiency and emission, however the extension of high load limit could not be achieved considerably.
Technical Paper

Effects of Hydrogen Addition to SI Engine on Knock Behavior

2004-06-08
2004-01-1851
In an SI engine, increasing the compression ratio could be one mean of achieving higher thermal efficiency. However, when the compression ratio is increased, knock occurs and it prevents higher thermal efficiency. It is generally known that if the burning velocity is increased and the combustion period is shortened, the occurrence of knock may be suppressed. Here, hydrogen was added to the gasoline engine as a mean of increasing the burning velocity. As a result, it has been confirmed that the occurrence of knock could be controlled to some extent, and knock could be completely avoided depending on the conditions for the distribution of hydrogen. Furthermore, it became clear that this result might have originated not only by the increase in the burning velocity but also by the hindrance of radical production by the hydrogen.
X