Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Development of a Parallel-Type Diesel Hybrid Bus and Fuel Efficiency Results from Trial Runs

2011-10-06
2011-28-0065
High-powered vehicles offer an advantage of superior fuel economy through use of regenerative braking and lowered transient emissions by reducing the operating portion of the engine to follow load as closely as in a conventional bus. A hybrid bus was designed and a prototype was developed. It has a parallel-type hybrid powertrain system and uses a 6-liter diesel engine which satisfy Euro-5 emission standard. 44-kW-electric motor, AMT (automated manual transmission) and Li-ion-type batteries were applied to this hybrid bus. Total 8 hybrid buses are test-running in 6 cities and the driving performances are monitored in terms of fuel efficiency, emission and convenience. This paper presents the performance, major component features and calibration procedures of hybrid powertrain systems. Test run monitoring result showed a benefit of fuel economy at least 36% by comparing to a conventional diesel-powered bus.
Technical Paper

Experimental study on characteristics of diesel particulate emissions with diesel, GTL, and blended fuels

2009-09-13
2009-24-0098
Various alternative diesel fuels such as gas to liquid (GTL) fuels, blends of diesel and biodiesel (D + BD20), and blends of GTL and biodiesel (G + BD20) were tested in a 2.0 L four-cylinder turbocharged diesel engine. A noticeable reduction in exhaust emissions as compared to diesel fuel, except for NOx emissions, was observed by blending biodiesel with diesel and GTL fuel under selected part load conditions. There was a maximum reduction of 33% for THC emissions and 27% for CO emissions for G + BD20 fuel as compared to diesel fuel. For PM size distributions, a noticeable decrease in the PM number concentration for all particle sizes less than 300 nm was observed with the blending of biodiesel. In contrast, there was a slight increase in the number concentration of PM with diameters of less than 50 nm for the cases of EGR. In the case of particulate matter (PM) mass concentration, there were reductions of 31~59% for D + BD20 fuel and 57~71% for G + BD20 fuel.
Technical Paper

Characteristics of Droplet and Icing Formation of an injector for Liquid Phase LPG Injection System

2007-07-23
2007-01-2050
The use of clean gaseous fuel in automotive engines has been continuously increased in order to meet the reinforcing emission regulations and to efficiently utilize limited natural resources. Since the liquid phase LPG injection (LPLI) system has an advantage of higher power and lower emission characteristics than the mixer type fuel supply system, many studies and applications have been conducted. However, the heat extraction, due to the evaporation of liquid LPG fuel, causes not only a dropping of LPG fuel but also icing phenomenon that is a frost of moisture in the air around the nozzle tip. Because both lead to a difficulty in the control of accurate air fuel ratio, it can result in poor engine performance and a large amount of HC emissions. The main objective of this study is to examine the characteristics of icing phenomenon and also aims to improve it through the use of anti-icing injection tip. An experimental investigation was carried out on the bench test rig in this study.
X