Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Ideal Computer Analysis of a Novel Engine Concept

1996-02-01
960080
A novel engine concept, currently under study, addresses many of the problems commonly associated with conventional internal combustion engines. In its simplest form the novel engine consists of a single crankshaft operating both a piston compressor and a piston expander which are connected by a continuous flame combustion chamber. One might regard this as a Brayton piston engine which is similar to a previous engine investigated by Warren. Also, due to the use of piston cylinders as the compression and expansion devices, this engine varies little mechanically from current engine technology thus allowing for easy implementation. The main improvement from conventional engine design is that the expansion cylinder can have a larger displacement than that of the compression cylinder. This allows more power to be extracted by lowering the loss due to blowdown and this will increase the thermal efficiency.
Technical Paper

Piston Motion and Ignition Delay: Details on Coal-Based Fuel Injection and Effects of Mass Leakage

1990-02-01
900388
In a recent study the present authors showed that piston motion in a compression ignition engine can have a small yet significant effect on ignition delay of diesel fuel. In particular, sinusoidal piston motion, or a motion with high dwell near top-dead-center, promotes reduced delay and improved cold starting relative to conventional slider-crank piston motion. This paper extends the analysis to the case of coal-diesel and coal-methanol blends, using experimental data from the thesis available in the literature. Ignition delay was shown again to be reduced with sinusoidal motion. In addition, the effect of piston motion on mass loss was considered. As expected, higher dwell near top-dead-center caused more mass loss, but there is still benefit to ignition delay of unusual piston motions unless the coefficient of leakage past the rings is very large.
X