Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Detection of Hybrid and Quiet Vehicles by Blind and Visually Impaired Pedestrians

2011-05-17
2011-01-1725
The increased popularity of hybrid electric vehicles has created a growing concern for the safety of blind and visually impaired pedestrians. Accident data published by the National Highway Traffic Safety Administration demonstrates a higher incident rate among hybrid electrics vehicles compared to internal combustion engine vehicles during slow speed movement, like when coming to a stop and leaving/entering a parking spot. The typical lower sound output of hybrid electric vehicles, compared to internal combustion engine vehicles, has been reported as the reason for higher incident rates. Previous studies have focused on the overall sound pressure level of vehicles and the ability for blind pedestrians to detect their approach.
Technical Paper

A Method to Determine the Power Input Associated with Rain Excitation for SEA Models

2001-04-30
2001-01-1625
Statistical Energy Analysis is used to predict the sound pressure level (SPL) in the interior of the vehicle. This is accomplished by knowing the energy sources (tire, engine, wind, etc) affecting the interior as well as the acoustic performance (absorption and transmission loss) of the interior trim components (headliner, door panels, instrument panel, etc). One of the noise sources that has not been seriously examined to-date is panel excitation by precipitation. The excitation of the roof due to raindrops can be a major noise source. Knowing how to properly model this power input would help analyze different headliners or roof treatments to minimize the SPL in the interior cavity. This will involve computational determination of mass, speed, and energy of standard water droplets for one of rain condition. A power spectrum is presented for one rain intensity condition on a test fixture.
Technical Paper

A General Optimization Approach for Minimizing Acoustic Power Using Finite Elements

1993-03-01
930198
A general approach for minimizing radiated acoustic power of a baffled plate excited by broad band harmonic excitation is given. The steps involve a finite element discretization for expressing acoustic power and vibration analysis, analytical design sensitivity analysis, and use of gradient-based optimization algorithms. Applications to rectangular plates and an engine cover plate are presented. Thicknesses are chosen as design variables.
X