Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Whole-Body Response to Pure Lateral Impact

2010-11-03
2010-22-0014
The objective of the current study was to provide a comprehensive characterization of human biomechanical response to whole-body, lateral impact. Three approximately 50th-percentile adult male PMHS were subjected to right-side pure lateral impacts at 4.3 ± 0.1 m/s using a rigid wall mounted to a rail-mounted sled. Each subject was positioned on a rigid seat and held stationary by a system of tethers until immediately prior to being impacted by the moving wall with 100 mm pelvic offset. Displacement data were obtained using an optoelectronic stereophotogrammetric system that was used to track the 3D motions of the impacting wall sled; seat sled, and reflective targets secured to the head, spine, extremities, ribcage, and shoulder complex of each subject. Kinematic data were also recorded using 3-axis accelerometer cubes secured to the head, pelvis, and spine at the levels of T1, T6, T11, and L3. Chest deformation in the transverse plane was recorded using a single chestband.
Technical Paper

Investigation of Upper Body and Cervical Spine Kinematics of Post Mortem Human Subjects (PMHS) during Low-Speed, Rear-End Impacts

2009-04-20
2009-01-0387
A total of eight low-speed, rear-end impact tests using two Post Mortem Human Subjects (PMHS) in a seated posture are reported. These tests were conducted using a HYGE-style mini-sled. Two test conditions were employed: 8 kph without a headrestraint or 16 kph with a headrestraint. Upper-body kinematics were captured for each test using a combination of transducers and high-speed video. A 3-2-2-2-accelerometer package was used to measure the generalized 3D kinematics of both the head and pelvis. An angular rate sensor and two single-axis linear accelerometers were used to measure angular speed, angular acceleration, and linear acceleration of T1 in the sagittal plane. Two high-speed video cameras were used to track targets rigidly attached to the head, T1, and pelvis. The cervical spine kinematics were captured with a high-speed, biplane x-ray system by tracking radiopaque markers implanted into each cervical vertebra.
Technical Paper

Correlation of Strain and Loads Measured in the Long Bones With Observed Kinematics of the Lower Limb During Vehicle-Pedestrian Impacts

2007-10-29
2007-22-0018
The purpose of this study is to determine the loads in the long bones of the lower extremities during vehicle pedestrian impact tests, and to correlate load data with observed kinematics in an effort to understand how stature and vehicle shape influence pedestrian response. In tests with a large sedan and a small multi-purpose vehicle (MPV), four postmortem human surrogates (PMHS) in mid-stance gait were struck laterally at 40 km/h. Prior to the tests, each PMHS was instrumented with four uniaxial strain gages around the mid-shaft cross section of the struck-side (right) tibia and the femora bilaterally. After the tests, the non-fractured bones were harvested and subjected to three-point bending experiments. The effective elastic moduli were determined by relating the applied bending loads with the measured strains using strain gage locations, detailed bone geometry, and elastic beam theory.
Technical Paper

Study of Airbag Interference with Out of Position Occupant by the Computer Simulation

2001-06-04
2001-06-0233
In the past few years many cases of serious injury to out of position occupants caused by airbag deployment have been reported in the United States. FMVSS208, which requires equipping automobiles with airbags, was revised to reduce the risk of deployment injury by airbags. The new regulation defines some new test procedures and several performance requirements regarding the out of position tests. The uniform gas pressure analysis has been a general analysis method for airbag deployment with computer simulations up to this point. However the membrane force of the airbag is a major parameter for the interference between the airbag and an out of position occupant, and the gas used for airbag deployment has the characteristics of a compressible fluid which is difficult to model. Therefore the general Euler-Lagrange coupling method will be necessary for the computer simulation of out of position occupant interference.
Technical Paper

Some Considerations on Air Bag Restraint System Design

1987-11-08
871277
Crash sensors for the air bag system may be broadly divided into mechanical and electronic devices. The mechanical sensor is based on the idea to balance an external force working on the mass against a bias force which is basically proportional to the displacement of the mass. The characteristics of such bias force can be brought very close to an optimum state by properly designing the sensor system. Studies are also well under way on the relationship between damping and mass displacement to make it satisfy the requirements for the air bag system. The electronic sensor features the capability of changing its characteristics through a computer program. The positioning of sensors in the vehicle should be decided on taking their characteristics into consideration. In addition to the crash tests required under the applicable laws and regulations, we have elected to conduct a series of other tests simulating a variety of crash modes that may occur on the road.
X