Refine Your Search

Topic

Search Results

Technical Paper

NVH Considerations for Highly Asymmetric Laminated Glass in Electric Vehicles

2023-05-08
2023-01-1048
The innovation and application of new technologies in battery electric vehicle (BEV) development continues to be a key objective of the automotive industry. One such area of development is glazing designs that reduce transmission of noise into vehicle interiors. Highly asymmetric laminated front side lites that consist of thick soda lime glass exterior plies laminated with thinner ion exchanged interior plies with acoustic polyvinyl butyral interlayers offer substantially reduced noise transmission compared to industry standard monolithic front side lites. These asymmetric laminate designs also provide additional benefits of improved toughness and penetration resistance. This paper documents a study that uses a systematic test-based approach to understand the sensitivity of interior vehicle noise behavior to changes in acoustic attenuation driven by installation of asymmetric laminated glass front side lites.
Technical Paper

NVH Methodologies for Electrified Drive Unit Development

2021-08-31
2021-01-1098
The automotive industry continues to develop new powertrain and vehicle technologies aimed at reducing overall vehicle-level fuel consumption. Specifically, the use of electrified propulsion systems, including electrified and electric drive units (EDU), is expected to play a significant role in helping OEMs meet fleet CO2 reduction targets for 2025 and beyond. The change to vehicles propelled by electrified powertrains leads to a reduction in vehicle noise levels. Despite the overall noise levels being low, the NVH behavior of such vehicles can be objectionable due to the presence of tonal noise coming from electric machines and geartrain components. In order to ensure customer acceptance of electrically propelled vehicles, it is imperative that these NVH challenges are understood and solved. Specifically, this paper discusses the EDU NVH development process. This includes considerations for CAE/test-based development and validation processes to ensure optimal NVH development.
Technical Paper

Active Sound Design Methodologies for Hybrid and Electric Vehicles

2021-08-31
2021-01-1019
The automotive industry continues to develop new powertrain and vehicle technologies aimed at reducing overall vehicle-level fuel consumption. Specifically, the use of innovative drivetrain technologies including conventional and electrified propulsion systems is expected to play an increasingly important role in helping OEMs meet fleet CO2 reduction targets for 2025 and beyond. NVH development for vehicles with electrified powertrains introduces new challenges, which need to be understood and solved. The electrified vehicle space spans variants from micro and mild hybrids all the way through plug-in hybrids and fully electric vehicles. In addition to conventional NVH development methodologies, active sound design (ASD) can play a crucial role to enhance the interior sound perception of such vehicles and hence, improve customer acceptance of new technologies. This paper will begin with an introduction to the NVH challenges posed by electrified vehicles.
Technical Paper

NVH Aspects of Electric Drive Unit Development and Vehicle Integration

2019-06-05
2019-01-1454
The automotive industry continues to develop new powertrain and vehicle technologies aimed at reducing overall vehicle-level fuel consumption. Specifically, the use of electrified propulsion systems is expected to play an increasingly important role in helping OEM’s meet fleet CO2 reduction targets for 2025 and beyond. This will also include a strong growth in the global demand for electric drive units (EDUs). The change from conventional vehicles to vehicles propelled by EDUs leads to a reduction in overall vehicle exterior and interior noise levels, especially during low-speed vehicle operation. Despite the overall noise levels being low, the NVH behavior of such vehicles can be objectionable due to the presence of tonal noise coming from electric machines and geartrain components as well as relatively high shares of road/wind noise. In order to ensure customer acceptance of electrically propelled vehicles, it is imperative that these NVH challenges are understood and solved.
Technical Paper

Assessment of Automotive Environmental Noise on Mobile Phone Hands-Free Call Quality

2019-06-05
2019-01-1597
Environmental noises such as wind, road, powertrain, and HVAC noise are important aspects to consider when implementing a hands-free terminal for mobile phone calling from within a car. Traditionally, these environmental noises have been exclusively considered for driver comfort; however, with the introduction of the hands-free terminals (HFT) and increasing consumer demand relative to mobile phone call quality, a broader implication of high background noise levels should be considered. HFT algorithm development and implementation can and does provide a high level of background noise suppression to mitigate these concerns, but this is often done at the expense of computational power and cumulative delay during a phone call. The more advantageous solution would be to address the problem from a source and path perspective with emphasis on reduction of noise in the frequency bands which most influence call quality performance.
Technical Paper

Target Development for Transmission and Electric Motor NVH

2019-06-05
2019-01-1554
It is a common practice to conduct NVH fingerprinting and benchmarking assessments at the powertrain level, to understand source level noise and vibration. To assess the NVH influence of engine, e-motor, and transmission, sub-system testing is often conducted in addition to full powertrain testing. These powertrain or sub-system investigations provide valuable information regarding the status of “source” level excitations relative to targets and / or competitive powertrains. In the case of transmissions and e-machines, it is particularly important to understand source level tonal content and how this will be perceived at the vehicle level. However, variation in component design results in differences in order content, which complicates the process of objectively comparing multiple products. Multiple methods are presented here for characterizing tonal content of transmission and e-machines, based on assessments conducted in a component hemi-anechoic dynamometer test cell.
Journal Article

Reduction of Parasitic Losses in Front-End Accessory Drive Systems: Part 2

2018-04-03
2018-01-0326
Demanding CO2 and fuel economy regulations are continuing to pressure the automotive industry into considering innovative powertrain and vehicle-level solutions. Powertrain engineers continue to minimize engine internal friction and transmission parasitic losses with the aim of reducing overall vehicle fuel consumption. In Part 1 of the study (2017-01-0893) described aspects of the test stand design that provides flexibility for adaptation to various test scenarios. The results from measurements for a number of front-end accessory drive (FEAD) components were shown in the context of scatterbands derived from multiple component tests. Key results from direct drive and belt-driven component tests were compared to illustrate the influence of the belt layout on mechanical efficiency of the FEAD system. The second part of the series will focus exclusively on the operation of the alternator. Two main elements of the study are discussed.
Journal Article

Impact of the Future Fuel Economy Targets on Powertrain, Driveline and Vehicle NVH Development

2017-06-05
2017-01-1777
The automotive industry continues to develop new technologies aimed at reducing overall vehicle level fuel consumption. Powertrain and driveline related technologies will play a key role in helping OEM’s meet fleet CO2 reduction targets for 2025 and beyond. Specifically, use of technologies such as downsized engines, idle start-stop systems, aggressive torque converter lock-up schedules, wide-ratio spread transmissions, and electrified propulsion systems are vital towards meeting aggressive fuel economy targets. Judicious combinations of such powertrain and driveline technology packages in conjunction with measures such as the use of low rolling resistance tires and vehicle lightweighting will be required to meet future OEM fleet CO2 targets. Many of the technologies needed for meeting the fuel economy and CO2 targets come with unique NVH challenges. In order to ensure customer acceptance of new vehicles, it is imperative that these NVH challenges be understood and solved.
Technical Paper

Optimization of Electric Vehicle Exterior Noise for Pedestrian Safety and Sound Quality

2017-06-05
2017-01-1889
The automotive industry continues to develop new powertrain and vehicle technologies aimed at reducing overall vehicle-level fuel consumption. Specifically, the use of electrified propulsion systems is expected to play an increasingly important role in helping OEM’s meet fleet CO2 reduction targets for 2025 and beyond. Electric and hybrid electric vehicles do not typically utilize IC engines for low-speed operation. Under these low-speed operating conditions, the vehicles are much quieter than conventional IC engine-powered vehicles, making their approach difficult to detect by pedestrians. To mitigate this safety concern, many manufacturers have synthesized noise (using exterior speakers) to increase detection distance. Further, the US National Highway Traffic Safety Administration (NHTSA) has provided recommendations pursuant to the Pedestrian Safety Enhancement Act (PSEA) of 2010 for such exterior noise signatures to ensure detectability.
Technical Paper

Assessment of Lightweight Automotive Glass Solutions on Interior Noise Levels & Sound Quality

2017-06-05
2017-01-1814
The automotive industry continues to develop technologies for reducing vehicle fuel consumption. Specifically, vehicle lightweighting is expected to be a key enabler for achieving fleet CO2 reduction targets for 2025 and beyond. Hybrid glass laminates that incorporate fusion draw and ion exchange innovations are thinner and thereby, offer more than 30% weight reduction compared to conventional automotive laminates. These lightweight hybrid laminates provide additional benefits, including improved toughness and superior optics. However, glazing weight reduction leads to an increase in transmission of sound through the laminates for certain frequencies. This paper documents a study that uses a systematic test-based approach to understand the sensitivity of interior vehicle noise behavior to changes in acoustic attenuation driven by installation of lightweight glass.
Technical Paper

Reduction of Parasitic Losses in Front-End-Accessory-Drive Systems - Part 1

2017-03-28
2017-01-0893
Demanding CO2 and fuel economy regulations are continuing to pressure the automotive industry into considering innovative powertrain and vehicle-level solutions. Powertrain engineers continue to minimize engine internal friction and transmission parasitic losses with the aim of reducing overall vehicle fuel consumption. Strip friction methods are used to determine and isolate components in engines and transmissions with the highest contribution to friction losses. However, there is relatively little focus on friction optimization of Front-End-Accessory-Drive (FEAD) components such as alternators and Air Conditioning (AC) compressors. This paper expands on the work performed by other researchers’ specifically targeting in-depth understanding of system design and operating strategy.
Journal Article

Influence of Automatic Engine Stop/Start Systems on Vehicle NVH and Launch Performance

2015-06-15
2015-01-2183
Integration of automatic engine Stop/Start systems in “conventional” drivetrains with 12V starters is a relatively cost-effective measure to reduce fuel consumption. Therefore, automatic engine Stop/Start systems are becoming more prevalent and increasing market share of such systems is predicted. A quick, reliable and consistent engine start behavior is essential for customer acceptance of these systems. The launch of the vehicle should not be compromised by the Stop/Start system, which implies that the engine start time and transmission readiness for transmitting torque should occur within the time the driver releases the brake pedal and de-presses the accelerator pedal. Comfort and NVH aspects will continue to play an important role for customer acceptance of these systems. Hence, the engine stop and re-start behavior should be imperceptible to the driver from both a tactile and acoustic standpoint.
Journal Article

Automobile Powertrain Sound Quality Development Using a Design for Six Sigma (DFSS) Approach

2015-06-15
2015-01-2336
Automotive companies are studying to add extra value in their vehicles by enhancing powertrain sound quality. The objective is to create a brand sound that is unique and preferred by their customers since quietness is not always the most desired characteristic, especially for high-performance products. This paper describes the process of developing a brand powertrain sound for a high-performance vehicle using the DFSS methodology. Initially the customer's preferred sound was identified and analyzed. This was achieved by subjective evaluations through voice-of-customer clinics using vehicles of similar specifications. Objective data were acquired during several driving conditions. In order for the design process to be effective, it is very important to understand the relationship between subjective results and physical quantities of sound. Several sound quality metrics were calculated during the data analysis process.
Technical Paper

Powertrain Level Target Setting for Impulsive Noise based on Interior Noise Levels

2015-06-15
2015-01-2295
The definition of vehicle and powertrain level NVH targets is one of the first tasks toward establishing where a vehicle's NVH behavior will reside with respect to the current or future state of industry. Realization of vehicle level NVH targets relies on a combination of competitive powertrain (source) and vehicle (path) NVH performance. Assessment of vehicle NVH sensitivity is well understood, and can be accomplished through determination of customer interface NVH response to measured excitations at the source input locations. However, development of appropriate powertrain source targets can be more difficult, particularly related to sound quality. This paper discusses various approaches for definition of powertrain targets for sound quality, with a specific focus on impulsive noise.
Technical Paper

Vehicle NVH Evaluations and NVH Target Cascading Considerations for Hybrid Electric Vehicles

2015-06-15
2015-01-2362
The increasing trend toward electric and hybrid-electric vehicles (HEVs) has created unique challenges for NVH development and refinement. Traditionally, characterization of in-vehicle powertrain noise and vibration has been assessed through standard operating conditions such as fixed gear engine speed sweeps at varied loads. Given the multiple modes of operation which typically exist for HEVs, characterization and source-path analysis of these vehicles can be more complicated than conventional vehicles. In-vehicle NVH assessment of an HEV powertrain requires testing under multiple operating conditions for identification and characterization of the various issues which may be experienced by the driver. Generally, it is necessary to assess issues related to IC engine operation and electric motor operation (running simultaneously with and independent of the IC engine), under both motoring and regeneration conditions.
Technical Paper

Virtual Powertrain Installation for Diesel Engine Sound Quality Development in a Light Duty Vehicle Application

2014-04-01
2014-01-0024
Increased customer expectation for NVH refinement creates a significant challenge for the integration of Diesel powertrains into passenger vehicles that might have been initially developed for gasoline engine applications. A significant factor in the refinement of Diesel powertrain sound quality is calibration optimization for NVH, which is often constrained by performance, emissions and fuel economy requirements. Vehicle level enablers add cost and weight to the vehicle and are generally bounded by vehicle architecture, particularly when dealing with a carry-over vehicle platform, as is often the case for many vehicle programs. These constraints are compounded by the need to make program critical sound package content decisions well before the availability of prototype vehicles with the right powertrain. In this paper, a case study on NVH development for integration of a light duty Diesel powertrain is presented.
Journal Article

Integration of Engine Start/Stop Systems with Emphasis on NVH and Launch Behavior

2013-05-13
2013-01-1899
Automatic engine start/stop systems are becoming more prevalent and increasing market share of these systems is predicted due to demands on improving fuel efficiency of vehicles. Integration of an engine start/stop system into a “conventional” drivetrain with internal combustion engine and 12V board system is a relatively cost effective measure to reduce fuel consumption. Comfort and NVH aspects will continue to play an important role for customer acceptance of these systems. Possible delay during vehicle launch due to the engine re-start is not only a safety relevant issue but a hesitating launch feel characteristic will result in reduced customer acceptance of these systems. The engine stop and re-start behavior should be imperceptible to the driver from both a tactile and acoustic standpoint. The lack of masking effects of the engine during the engine stop phases can cause other “unwanted” noise to become noticeable or more prominent.
Technical Paper

The NVH Behavior of Internal Combustion Engines used in Range Extended Electric Vehicles

2013-05-13
2013-01-2002
The electrification of vehicle propulsion has changed the landscape of vehicle NVH. Pure electric vehicles (EV) are almost always quieter than those powered by internal combustion engines. However, one of the key challenges with the development of range extended electric vehicles (ReEV) is the NVH behavior of the vehicle. Specifically, the transition from the EV mode to one where the range extender engine is operational can cause significant NVH issues. In addition, the operation of the range extender engine relative to various driving conditions can also pose significant NVH concerns. In this paper internal combustion engines are examined in terms of their acoustic behavior when used as range extenders. This is done by simulating the vibrations at the engine mounting positions as well as the intake and exhaust orifice noise. By using a transfer path synthesis, interior noise components of the range extenders are calculated from these excitations.
Technical Paper

NVH Target Cascading from Customer Interface to Vehicle Subsystems

2013-05-13
2013-01-1980
The definition of vehicle and powertrain level targets is one of the first tasks toward establishing where a vehicle will reside with respect to the current or future state of industry. Though development of sound quality metrics is ongoing to better correlate objective data with subjective assessments, target setting at the vehicle level is relatively straightforward. However, realization of these targets depends on effective cascading to system and component levels. Often, component level targets are derived based on experience from earlier development programs, or based on selected characteristics observed during component level benchmarking. An approach is presented here to complement current strategies for component level target definition. This approach involves a systematic concept for definition of component NVH targets based on desired vehicle level performance and a consequent target break down.
Journal Article

7-XDCT: Compact and Cost-Efficient Dual Clutch Transmission for Small and Mid-Size Vehicles

2013-04-08
2013-01-1271
The automotive industry continues to develop new powertrain technologies aimed at reducing overall vehicle level fuel consumption. The ongoing trends of “downsizing” and “down speeding” have led to the development of turbocharged engines with low displacement and high torque density. In order to meet the launch response requirements with these engines as well as fuel economy needs, transmissions with large ratio spreads will need to be developed. Due to the lack of torque amplification from the torque converter, the next generation of dual clutch transmissions (DCT) will need to have larger launch ratios and ratio spreads than currently available in production today. This paper discusses the development of a new family of DCT (called “xDCT”) for use in front wheel drive vehicles, aimed at meeting some of these challenges. The xDCT family features two innovative concepts, the idea of “gear generation” and “supported shifts”.
X