Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Development and Validation of a Computational Process for Pass-By Noise Simulation

2001-04-30
2001-01-1561
The Indirect Boundary Element Analysis is employed for developing a computational pass-by noise simulation capability. An inverse analysis algorithm is developed in order to generate the definition of the main noise sources in the numerical model. The individual source models are combined for developing a system model for pass-by noise simulation. The developed numerical techniques are validated through comparison between numerical results and test data for component level and system level analyses. Specifically, the source definition capability is validated by comparing the actual and the computationally reconstructed acoustic field for an engine intake manifold. The overall pass-by noise simulation capability is validated by computing the maximum overall sound pressure level for a vehicle under two separate driving conditions.
Technical Paper

Vehicle Disc Brake Squeal Simulations and Experiences

1999-05-18
1999-01-1738
Brake related warranty costs are a major concern to the automotive industry. Large part of these costs are due to noise, more particularly due to the brake squeal complaints. Computer-aided engineering solutions have attracted a lot of attention from the engineering and development community for more effective brake product development. Recently, three brake squeal analysis methods were implemented on disc type brakes in a vehicle program at Ford. This paper summarizes the results and documents the experience obtained during implementation in the vehicle CAE process.
Technical Paper

Brake Squeal DOE Using Nonlinear Transient Analysis

1999-05-18
1999-01-1737
To reduce warranty cost due to brake squeal and provide guidance for brake design, it is important to understand the contributions of key brake design parameters to brake noise. In this paper, a new technique, which employs the nonlinear transient finite element method as well as Taguchi method, is proposed as a design tool for improving the quality of brake systems. This DOE technique has been implemented to a car program. The final results identified the major parameters associated with the brake noise and also led to an optimal design by selecting appropriate levels of those parameters.
Technical Paper

Acoustic Analysis of Vehicle Ribbed Floor

1997-05-20
971945
Ribbed floor panels have been widely applied in vehicle body structures to reduce interior noise. The conventional approach to evaluate ribbed floor panel designs is to compare natural frequencies and local stiffness. However, this approach may not result in the desired outcome of the reduction in radiated noise. Designing a “quiet” floor panel requires minimizing the total radiated noise resulting from vibration of the floor panel. In this study, the objective of ribbed floor panel design is to reduce the total radiated sound power by optimizing the rib patterns. A parametric study was conducted first to understand the effects of rib design parameters such as rib height, width, orientation, and density. Next, a finite element model of a simplified body structure with ribbed floor panel was built and analyzed. The structural vibration profile was generated using MSCINastran, and integrated with the acoustic boundary element model.
X