Refine Your Search

Search Results

Viewing 1 to 9 of 9
Training / Education

Fundamental Concepts of Turbocharging Modern Engines Current Practices and Trends Web Course RePlay

Anytime
Turbocharging is an integral part of many internal combustion engine systems. While it has long been a key to diesel engine performance, turbocharging is increasingly seen as an enabler in meeting many of the efficiency and performance requirements of modern automotive gasoline engines. This replay discusses the basic concepts of turbocharging and air flow management of four-stroke engines. It explores the fundamentals of turbocharging, system design features, performance measures, and matching and selection criteria. Topics include spark ignition, diesel engine systems, and the impact of different applications.
Technical Paper

An Exploratory Look at an Aggressive Miller Cycle for High BMEP Heavy-Duty Diesel Engines

2019-04-02
2019-01-0231
Through aggressive application of the Miller Cycle, using two-stage turbocharging, medium speed diesel marine and stationary power engines are demonstrating over 30 bar rated power BMEP, and over 50 percent brake thermal efficiency. The objective of this work was to use engine cycle simulation to assess the degree to which the aggressive application of the Miller Cycle could be scaled to displacements and speeds more typical of medium and heavy truck engines. A 9.2 liter six-cylinder diesel engine was modeled. Without increasing the peak cylinder pressure, improved efficiency and increased BMEP was demonstrated. The level of improvement was highly dependent on turbocharger efficiency - perhaps the most difficult parameter to scale from the larger engines. At 1600 rpm, and a combined turbocharger efficiency of 61 percent, the baseline BMEP of 24 bar was increased to over 26 bar, with a two percent fuel consumption improvement.
Journal Article

A Study Isolating the Effect of Bore-to-Stroke Ratio on Gasoline Engine Combustion Chamber Development

2016-10-17
2016-01-2177
A unique single cylinder engine was used to assess engine performance and combustion characteristics at three different strokes, with all other variables held constant. The engine utilized a production four-valve, pentroof cylinder head with an 86mm bore. The stock piston was used, and a variable deck height design allowed three crankshafts with strokes of 86, 98, and 115mm to be tested. The compression ratio was also held constant. The engine was run with a controlled boost-to-backpressure ratio to simulate turbocharged operation, and the valve events were optimized for each operating condition using intake and exhaust cam phasers. EGR rates were swept from zero to twenty percent under low and high speed conditions, at MBT and maximum retard ignition timings. The increased stroke engines demonstrated efficiency gains under all operating conditions, as well as measurably reduced 10-to-90 percent burn durations.
Technical Paper

Methodology Development for Tumble Port Evaluation

2016-04-05
2016-01-0636
The objective of this work was to develop a methodology to rapidly assess comparative intake port designs for their capability to produce tumble flow in spark-ignition engine combustion chambers. Tumble characteristics are of relatively recent interest, and are generated by a combination of intake port geometry, valve lift schedule, and piston motion. While simple approaches to characterize tumble from steady-state cylinder head flow benches have often been used, the ability to correlate the results to operating engines is limited. The only available methods that take into account both piston motion and valve lift are detailed computational fluid dynamic (CFD) analysis, or optical measurements of flow velocity. These approaches are too resource intensive for rapid comparative assessment of multiple port designs. Based on the best features of current steady-flow testing, a simplified computational approach was identified to take into account the important effects of the moving piston.
Technical Paper

Experimental and Analytical Studies of Cylinder Head Cooling

1993-04-01
931122
Previous work on the cooling jackets of the Cummins L10 engine revealed flow separation, and low coolant velocities in several critical regions of the cylinder head. The current study involved the use of detailed cooling jacket temperature measurements, and finite element heat transfer analysis to attempt the identification of regions of pure convection, nucleate boiling, and film boiling. Although difficult to detect with certainty, both the measurements and analysis pointed strongly to the presence of nucleate boiling in several regions. Little or no evidence of film boiling was seen, even under very high operating loads. It was thus concluded that the regions of seemingly inadequate coolant flow remained quite effective in controlling cylinder head temperatures. The Cummins L10 upon which this study has focused is an in-line six cylinder, four-stroke direct injection diesel engine, with a displacement of 10 liters.
Technical Paper

Combustion Chamber Component Analysis for Advanced Heavy Duty Diesel Engines

1989-09-01
891900
Detailed thermal analysis was conducted on several advanced cylinder head, liner, and piston concepts, for low heat rejection diesel engines. The analysis was used to define an optimized engine configuration. Results pointed to the strategic use of oil cooling and insulation in the cylinder head, an oil cooled cylinder liner, and an insulated piston, with separate insulation behind the compression rings. Such a configuration reduced in-cylinder heat rejection by 30 percent, while durability would be expected to be maintained or improved from today's production levels.
Technical Paper

The Use of Flow Visualization and Computational Fluid Mechanics in Cylinder Head Cooling Jacket Development

1989-09-01
891897
The complementary use of flow visualization and computational fluid mechanics has been demonstrated for the development of cylinder head cooling jackets. Flow visualization was shown to allow the detailed characterization of fluid flow through the complex geometry of a cooling jacket. The use of high speed photography further aided in visualizing the details of the flow, and was used to quantify local fluid velocities. Computationally modeling portions of the cooling jacket allowed the extension of the flow visualization results to the fluid conditions of an operating engine. The computational model also provided an effective tool to assess the impact of modifications to the cooling jackets, without the complexity of modifying the flow visualization test rig for each iteration.
Technical Paper

Measurement and Analysis of the Effect of Wall Temperature on Instantaneous Heat Flux

1986-03-01
860312
Measurements of instantaneous temperature were made at three locations on the cylinder head of a direct injection diesel engine. Changes in calculated instantaneous heat flux with changes in cylinder head surface temperature were assessed. The results were used in an assessment of various approaches to the description of instantaneous heat transfer incorporated in diesel cycle simulations. It was concluded that changes in the thermal boundary layer thickness throughout the cycle could account for some of the observed phenomena. A close correlation was seen between the heat transfer measured here and earlier published studies of measured boundary layer thickness. Some additional indications from the measurements point to a significant thermal capacitance of the boundary layer. Additional work is needed to further understand the potential ramifications of this effect.
Technical Paper

The Effect of Mixing Intensity and Degree of Premix on Soot Formation in a Backmixed Combustor

1983-09-12
831295
To date there is no universal agreement as to the interaction between fuel type, fuel-air mixture preparation and combustion chamber flow characteristics and their effect on soot formation. A propane fueled modified conical back-mixed steady flow reactor was built in which the fuel and air could be mixed together in varying degrees and reacted in at different mixing intensities. The onset of soot and soot loading were determined qualitatively by a photomultiplier focused on the volume inside the reactor. Increasing the degree of premix from a diffusion flame to a distribution of Φmax/Φavg = 5.0 resulted in increases of 3 to 17 percent of the soot-onset equivalence ratio and decreases in soot loading down to zero. Changes in the mixing intensity from 32.5 sec−1 to 75.7 sec−1 resulted in a change in the soot-onset equivalence ratio from 1.26 to 1.52. Soot loading was found to depend on both the mixing intensity, β, and the average number of mixes per mean residence time, β/α.
X