Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Methods for Internal Combustion Engine Feedback Control During Cold-Start

1995-02-01
950842
Legislation pertaining to automobile emissions has caused an increased focus on the cold-start performance of internal combustion engines. Of particular concern is the period of time before all available sensors become active. Present engine control strategies must rely on methods other than feedback control while these sensors are not active. Without feedback control during this critical period, engine emissions performance is not optimized. These conditions cause difficulty in performing comprehensive cold-start experiments. For these reasons, we have developed several methods for feedback control during cold-start to aid in laboratory investigations of engine emissions phenomena.
Technical Paper

Improved Knock Detection by Advanced Signal Processing

1995-02-01
950845
Engine knock has been recognized as a major problem limiting the development of fuel efficient spark-ignition engines. Detection methods employed in current knock control systems for spark ignition engines use a measurement of engine block vibration tuned to one or more resonance frequencies to extract knock-related information from the engine structural vibration. A major problem in the detection of knock (especially at higher engine speed) in commercial engines is the isolation of the desired signal from the contributions of the components other than those associated with the phenomenon under investigation. This is generally referred to as background noise. It is known that the engine knock resonance frequencies vary due to changes in combustion chamber volume and temperature during the expansion phase. Therefore, we propose an improved knock detection method using joint time-frequency analysis of engine block vibration and pressure signals.
X