Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Vehicle System Impacts of Fuel Cell System Power Response Capability

2002-06-03
2002-01-1959
The impacts of fuel cell system power response capability on optimal hybrid and neat fuel cell vehicle configurations have been explored. Vehicle system optimization was performed with the goal of maximizing fuel economy over a drive cycle. Optimal hybrid vehicle design scenarios were derived for fuel cell systems with 10 to 90% power transient response times of 0, 2, 5, 10, 20, and 40 seconds. Optimal neat fuel cell vehicles where generated for responses times of 0, 2, 5, and 7 seconds. DIRECT, a derivative-free optimization algorithm, was used in conjunction with ADVISOR, a vehicle systems analysis tool, to systematically change both powertrain component sizes and the vehicle energy management strategy parameters to provide optimal vehicle system configurations for the range of response capabilities.
Technical Paper

Artificial Neural Network Based Energy Storage System Modeling for Hybrid Electric Vehicles

2000-04-02
2000-01-1564
The modeling of the energy storage system (ESS) of a Hybrid Electric Vehicle (HEV) poses a considerable challenge. The problem is not amenable to physical modeling without simplifying assumptions that compromise the accuracy of such models. An alternative is to build conventional empirical models. Such models, however, are time-consuming to build and are data-intensive. In this paper, we demonstrate the application of an artificial neural network (ANN) to modeling the ESS. The model maps the system's state-of-charge (SOC) and the vehicle's power requirement to the bus voltage and current. We show that ANN models can accurately capture the complex, non-linear correlations accurately. Further, we propose and deploy our new technique, Smart Select, for designing ANN training data.
Technical Paper

Modeling and Validation of a Fuel Cell Hybrid Vehicle

2000-04-02
2000-01-1566
This paper describes the design and construction of a fuel cell hybrid electric vehicle based on the conversion of a five passenger production sedan. The vehicle uses a relatively small fuel cell stack to provide average power demands, and a battery pack to provide peak power demands for varied driving conditions. A model of this vehicle was developed using ADVISOR, an Advanced Vehicle Simulator that tracks energy flow and fuel usage within the vehicle drivetrain and energy conversion components. The Virginia Tech Fuel Cell Hybrid Electric Vehicle was tested on the EPA City and Highway driving cycles to provide data for validation of the model. Vehicle data and model results show good correlation at all levels and show that ADVISOR has the capability to model fuel cell hybrid electric vehicles.
X