Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Development of Oxygen Generation System for a Long Manned Mission

1996-07-01
961370
An Oxygen Generation System (OGS) is an indispensable system for a long manned space mission. A Solid Polymer Water Electrolysis System (SPWES) has been developing by Kawasaki Heavy Industries, Ltd. for a future space mission since 1985. The authors have been studying the SPWES of a new solid polymer electrolyte with simplified cell structure. We presented the initial study results until 1993 at the former International Conference on Environmental Systems (ICES) shown in REFERENCE. The study was focused on the development of a SPWE cell at ambient pressure. This paper describes a follow-on study results related to development activity of a pressure cell module especially.
Technical Paper

Analysis of the Sound Field in an Automobile Cabin by using the Boundary Element Method

1989-05-01
891153
A method of analyzing the three-dimensional sound field in a full-size automobile cabin was studied. The acoustic resonant frequency and the acoustic mode of the cabin were calculated by using the boundary element method (BEM), and were then compared with an experiment conducted on a full-size cabin model made of plaster. The calculated resonant frequencies agreed with measured ones to within about 3% below 170 Hz, and the calculated modes and frequency response curves were in good agreement with experiments when the cabin wall was rigid. In the case of a wall partially lined with absorbing materials, the calculated resonant frequency and the damping ratio were approximately the same as the experimental ones. From these studies, it is concluded that the BEM is useful for analyzing the sound field in a full-size automobile cabin.
Technical Paper

A High Power, Wide Torque Range, Efficient Engine with a Newly Developed Variable Geometry Turbocharger

1989-02-01
890457
A turbocharger which has four pairs of fixed vanes and movable vanes inside the turbine scroll was developed. A 1.2-liter experimental gasoline engine with this turbocharger was made and mounted in the body of a passenger car. This variable-geometry mechanism did not need a waste-gate system. Results of bench tests showed that this engine generated a 93.3 kPa (700 mmHg) boost pressure over a 6,000 rpm range. This paper presents the mechanism, operation, and performance data of this variable-geometry turbocharger, as well as the performance data of the 1.2-liter experimental engine and this passenger car.
Technical Paper

A High Power, Wide Torque Range, Efficient Engine with a Newly Developed Variablea-Valve-Lift and -Timing Mechanism

1989-02-01
890675
A variable valving system was developed. This system has two cam profiles, one for low speed and one for high speed. A 1.2-litre DOHC experimental engine using this system was made and mounted in the body of a 2-1itre class passenger car. Test results of this car were compared to those of the same car with its original engine. The test car showed better results in every area of driving performance, in mode-fuel-econorny and in noise tests. This paper presents the mechanism, operation and test results of this variable valving system, the 1.2-litre experimental engine and this passenger car. THE PERFORMANCE AND EFFICIENCY of the passenger car gasoline engine have been greatly improved: primarily as a response to exhaust-gas emission regulations and the oil crises. These improvements have been achieved mainly through the development of control technologies to optimize many parameters such as ignition timing and air fuel ratio precisely according to driving conditions.
X