Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Development Process of a Formula SAE Chassis

2011-11-08
2011-32-0656
Chassis design on a racing car must meet many conflicting requirements including high torsional and flexual rigidity, driver safety, optimum suspension geometry, a low center of gravity and light weight. In comparison to our 2010 model, the frame weight of the 2011 model was reduced by 15% whilst increasing torsional rigidity to 920Nm/deg. Suspension geometry was refined based on driver feedback and track chronometry. Suspension components were simplified, reducing weight by 10% and greatly reducing cost. A standardization approach was taken from the 2011 model, allowing a near complete compatibility of commercial parts amongst different year models.
Technical Paper

Heat Rejection/Retention Characteristics of a Re-deployable Radiator for Venus Exploration Mission

2007-07-09
2007-01-3241
This paper experimentally and analytically evaluates the heat rejection/retention performance of a reversible thermal panel (RTP) which can autonomously change thermal performance depending on its own thermal conditions. The RTP is considered as a candidate methodology for thermal control of Venus mission, PLANET-C, in order to save survival heater power. An RTP prototype was tested and evaluated. An analytical thermal model of the RTP was also developed, and basic performances of the RTP were evaluated. Thermal performance of the RTP when applied to the longwave camera (LIR) of the PLANET-C was evaluated with an analytical thermal model as functions of fin deployment directions and rear surface properties of the RTP's fin. The analytical results showed that the RTP can save heater power in comparison to a conventional radiator.
Technical Paper

Design and Fabrication of a Passive Deployable/Stowable Radiator

2006-07-17
2006-01-2038
A lightweight 100 W-class deployable radiator with environment-adaptive functions has been investigated. This radiator - Reversible Thermal Panel (RTP) - is composed of flexible high thermal conductive materials and a passive reversible actuator, and it changes its function from a radiator to a solar absorber by deploying/stowing the reversible fin upon changes in the heat dissipation and thermal environment. The RTP is considered one of the candidates of thermal control methodology for the Japanese Venus mission “Planet-C”, which will be launched in 2010 to save its survival heater power. In this paper, design and fabrication of the RTP proto-model (PM) and the test results of deployment/stowing characteristics in an atmospheric condition are reported. Thermal performance estimation with thermal analytical model of the RTP PM is also presented.
Technical Paper

Analysis of Milling Mechanism by Ball End-Mill and Development of High Speed Die-Sinking Method

1988-11-01
881742
Various dies have been used for producing many internal and external parts of an automobile. This paper describes the method of ‘High Speed Die-sinking’ that is one of the key technologies for die-making. We analyzed the milling mechanism of a typical Ball End-Mill used for die-sinking and performed cutting tests. As a result, we have achieved high speed and fine quality die-sinking technology. Its feed speed is about four or five times as fast as before, and the irregularity of the milled surface is under one-fifth as compared with previous level. In addition, we will propose the new method for estimating finishing performance by ball end-mill.
X