Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Head Impact Protection using a Light Weight Composite Tubular Structure

2000-03-06
2000-01-0628
O-EA tubing is a composite structure, made of aluminum and paper, that is being used for energy absorption and crash injury mitigation in automotive head impact, side impact and knee bolster applications. This paper describes the component testing, material/geometry characterization and the evolution of a finite element model of the O-EA tubing through a 3-Stage methodology. In the first part of the paper, a description of the O-EA tubing construction and the manufacturing process is provided. Next, the material and geometry characterization of the constituent aluminum and paper layers, using static component tests and a finite element model, is described. A layered composite material model in conjunction with a shell element discretization of the geometry is identified to be the most suitable modeling approach.
Technical Paper

A Numerical Simulation of the Thermal Process in Controlled Atmosphere Brazing (CAB) of an Aluminum Heat Exchanger

1998-02-23
980053
This paper describes a heat transfer model currently being developed for a next generation controlled atmosphere brazing furnace for production of automotive aluminum heat exchangers. This furnace will be numerically controlled to improve product yield. Part of the control loop decision will be based on predicted heat exchanger temperatures for set operating conditions. The numerical program is a transient heat transfer model simulating the radiant heat transfer between the furnace and the heat exchanger and the conduction heat transfer within the heat exchanger. The program solves the three-dimensional conduction equation for a solid using an implicit finite difference method. The boundary conditions to the solid is the radiant heat exchange. The program determines the radiant heat exchange based on the assumption of gray diffuse surfaces.
X