Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Effect of In-cylinder Catalysts and Turbulence Chamber Spark Plug on a Two-Stroke Engine

2001-11-01
2001-28-0057
This paper is concerned with means for reducing the exhaust emissions and improving the performance of a two-stroke SI engine, by utilizing the principle of catalytic coating and turbulence chamber sparkplug. A single cylinder air-cooled two-stroke SI engine was selected as the base engine and the experiments were conducted at part load conditions. The standard engine was modified to run with turbulence chamber sparkplug and with catalytic coating. The various catalysts selected were copper oxide (CuO), chromium oxide (Cr2O3) and combination of copper oxide and cerium oxide (CuO+CeO2). A number of Iternative configurations, employing different materials and shapes were also tried for optimizing the turbulence chamber design. Experimental results obtained from catalytic coated and turbulence chamber sparkplug equipped engine were compared with base line data.
Technical Paper

Spark Assisted Diesel Operation in a Low Compression Ratio Low Heat Rejection Engine

1992-02-01
920545
In the present work, investigations were carried out on a single cylinder, low compression ratio, spark-assisted low heat rejection D.I diesel engine. An extended electrode spark plug was used. Performance and emission tests on the engine were carried out with diesel fuel at two compression ratios, 10.5 and 12.5. In each case the engine was tested as a normal engine as well as a low heat rejection engine. The test results show that the low compression ratio spark assisted diesel engine operates very smoothly due to the low peak pressure and low rate of pressure rise. The low heat rejection spark assisted diesel engine gave an improved performance and reduced emissions compared to the normal baseline diesel engine.
Technical Paper

Experimental Investigations on Three Different Methods of Using 100% Methanol in a Low Heat Rejection Engine

1992-02-01
920197
As alternate fuels, ethyl and methyl alcohols stand out because of the feasibility of producing them in bulk from plentifully available raw materials. In the present work, methanol is used as the only fuel, in a Low Heat Rejection(LHR) engine by adapting three different methods. In the first method, methanol as the sole fuel was used in the LHR engine with a ceramic glowplug and in the second spark plug assistance was used to initiate combustion of the injected methanol. In the third method, methanol was used as the sole fuel in a LHR engine by a new method in which part of the methanol fuel was inducted through a heated inlet manifold using a carburetor and another part of methanol (with 1% castor oil for lubrication) was injected through the normal injector. With inducted methanol air charge temperature at 70 C and above the engine operated smoothly.
Technical Paper

Experimental Investigation on Extended Expansion Engine (EEE)

1992-02-01
920452
This paper deals with the experimental investigation carried out to study the effect of expansion ratio (ER) on the brake thermal efficiency of a spark ignition ( S.I. ) engine. Intake valve closure timing (IVCT) and clearance volume have been suitably altered to achieve different ERs and compression ratios (CRs). For the modified engines the ratio of ER to CR ranges from 1:1 to 2.27:1, for CRs of 6,7, and 8:1. The results have been compared with the standard version of the engine with compression ratio of 7 and 8:1. Brake thermal efficiency improvement up to 35% has been achieved with a combination of variable IVCT (VIVCT) and variable CR (VCR) at part - load operation. Results show that in this system CR can be lowered without penalizing the thermal efficiency of the engine. Results indicate that the thermal efficiency of an Extended Expansion Engine with a CR of 6:1 and ER/CR equal to 1.5 is equal to the thermal efficiency of a standard engine with a CR of 8:1.
X