Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Evaluation of Combustion Parameters in Direct Injection Diesel Engines - An Easy and Reliable Method

1993-03-01
930605
Evaluation of combustion parameters such as ignition delay and combustion duration are very important in the design and development of reciprocating diesel engines. So far, there is no established and straight, forward method for the estimation of these parameters. In this paper first the available methods have been reviewed. Limitations of the direct method have been discussed. Effect of some operating variables like compression ratio, speed, load and injection advance on the combustion parameters have been studied. An easy and reliable approach has been suggested for the determination of start and end of combustion for a direct injection diesel engine, minimizing the personal judgment. Procedure for calculating the ignition delay and combustion duration based on the experimental study has been highlighted for the proposed method.
Technical Paper

Experimental Investigation on Extended Expansion Engine (EEE)

1992-02-01
920452
This paper deals with the experimental investigation carried out to study the effect of expansion ratio (ER) on the brake thermal efficiency of a spark ignition ( S.I. ) engine. Intake valve closure timing (IVCT) and clearance volume have been suitably altered to achieve different ERs and compression ratios (CRs). For the modified engines the ratio of ER to CR ranges from 1:1 to 2.27:1, for CRs of 6,7, and 8:1. The results have been compared with the standard version of the engine with compression ratio of 7 and 8:1. Brake thermal efficiency improvement up to 35% has been achieved with a combination of variable IVCT (VIVCT) and variable CR (VCR) at part - load operation. Results show that in this system CR can be lowered without penalizing the thermal efficiency of the engine. Results indicate that the thermal efficiency of an Extended Expansion Engine with a CR of 6:1 and ER/CR equal to 1.5 is equal to the thermal efficiency of a standard engine with a CR of 8:1.
X