Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Thermal Profile of a Modern Passenger Car Diesel Engine

2006-10-16
2006-01-3409
In the last 15 years, diesel engines in passenger cars have evolved rapidly. The combination of performance, fuel consumption, emissions and refinement offered by a modern diesel engine makes it the preferred engine choice in many sectors of the market. The enormous progress made has resulted from technological improvements such as low swirl 4-valve per cylinder, direct injection combustion systems complemented by high pressure common rail fuel systems and high levels of turbocharger boost pressure. The durability and output potential of such engines is strongly linked to the operating temperature of certain key components. Accurate temperature predictions are an essential pre-requisite to the continuing evolution, thus placing emphasis on the need for high quality predictive tools.
Technical Paper

Actively Controlled Cooling Jets

2003-03-03
2003-01-0614
A proof-of-concept study has been undertaken to demonstrate the use and potential benefits of actively controlled coolant jets in an IC engine cooling gallery simulator. Results have shown that substantial reductions in coolant volumes are possible and that the control of the liquid/metal surface temperature can be achieved within +/- 0.2°C in response to transient heat flux conditions.
Technical Paper

Predictions for Nucleate Boiling - Results From a Thermal Bench Marking Exercise Under Low Flow Conditions

2002-03-04
2002-01-1028
Two predictive methods have been applied to an IC engine cooling gallery simulator to provide benchmarking heat transfer information. The object of this work was to assess the suitability and accuracy of these methods for application to future on-engine heat transfer studies. Such studies are aimed at developing predictive tools to aid in the design of precision cooling systems. The modelling techniques of Rohsenow and Chen have been used, modified and validated. Compared against experimental data, the sub-cooled form of the Chen model has been found to be most representative for the cooling gallery simulator designed specifically to meet the requirements of this work.
Technical Paper

A Review of Precision Engine Cooling

1999-03-01
1999-01-0578
Although successful “precision cooled” prototype engines have been demonstrated, the design of most mainstream coolant jackets has evolved only cautiously, and lacked this major change in approach. The achievements and potential of precision cooling are reviewed, along with an extension into nucleate boiling based heat transfer. It is demonstrated that ideas for advanced “external” cooling systems with low flowrates are in fact extremely compatible with the “internal” precision engine cooling philosophy, and in combination promise even larger benefits.
Technical Paper

Quality Assurance for Combustion Chamber Thermal Boundary Conditions - A Combined Experimental and Analytical Approach

1993-04-01
931139
The increasing cost of prototype engine design and development has placed new emphasis on the importance of accurate analysis of combustion chamber components. A method to assess and improve the quality of thermal boundary conditions is described. The integration of analytical approaches and experimental techniques to validate and improve thermal boundary conditions is dependent on continuous improvement of theoretical models and correlation with measured results. To monitor and improve quality, it is important to operate a closed loop of prediction, measurement and feedback to the analysis system. The development of advanced computational methods, particularly the Finite Element Method (FEM) has increased the opportunities to include detailed component thermal analysis in combustion chamber design studies. In using FEM, much emphasis is traditionally placed on “accurate” mesh generation in order to minimise element distortion and optimise element polynomial order.
X