Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

3D Modelling and Photographic Investigation of Combustion in Hydra DI Diesel Engine

1996-02-01
960836
High speed photographs of spray and combustion, obtained from a Hydra direct injection research diesel engine are compared with the predictions made by KIVA-3 computer code. The preprocessor has been modified to generate a grid for an offset bowl and the postprocessor has been extensively reprogrammed to obtain contour maps. The model has been tuned to low load at 2000rpm. Then the predictive capability of the model has been verified at other operating conditions. Predicted results show very good agreement with the experimental data.
Technical Paper

Influence of Swirl on High Pressure Injection in Hydra Diesel Engine

1993-03-01
930978
The influence of swirl on performance and emissions was investigated using a single cylinder Hydra research engine fitted with a high pressure electronic unit injector and a variable swirl mechanism. A large amount of emission data was collected together with the cylinder pressure, fuel line pressure and needle lift signals at a wide range of operating conditions. The influence of a fixed swirl ratio on emissions was also investigated on a Ford HSD425 York engine with conventional injection system and a synopsis of the results is discussed. Laser illuminated high speed cinematography was used to study the interaction of swirl with spray and combustion processes. Data is presented on air- fuel mixing, spray trajectories and flame movement at different operating conditions. Data is also presented to highlight the influence of swirl on the heat release rate, cylinder pressure rise and its relation to measured emission levels, particularly NOx and particulates.
Technical Paper

Laser Illuminated Photographic Studies of the Spray and Combustion Phenomena in a Small High Speed DI Diesel Engine

1992-10-01
922203
A large number of high speed photographs have been taken of combustion in a high speed direct injection diesel engine. A frame rate of upto 20,000 frames/sec has been achieved at engine speeds up to 3000 rev/min. This has been achieved by computer controlled synchronization of a Cu-vapour laser illumination source, the high speed camera and the electronically controlled fuel injection equipment. In addition to the photography, the basic macroscopic parameters of combustion were recorded simultaneously: this enables the photographic information to be related to the heat release information. The parameters investigated include the influence of swirl ratio, injection system, engine speed, load, injection timing, and combustion chamber shape on spray and combustion. The influence of various parameters on spray growth, ignition and combustion is discussed. Combustion processes in open and reentrant open bowl combustion chambers are examined.
Technical Paper

The Effect of DI Nozzle Fouling on Fuel Spray Characteristics

1992-10-01
922232
The atomisation characteristics of DI diesel engine fuel injection nozzles have been the subject of intensive study over the last decade. Much of this work has been related to clean, single hole nozzles spraying into quiescent air, at either ambient conditions or elevated pressures and temperatures. Experience shows that fuel injector nozzles may foul very rapidly in field service, and that this might have a significant effect on the performance of the engine particularly with regard to emissions. The build up of material on the injector nozzle can be controlled by the addition of suitable fuel additives. This paper describes test procedures developed to assess deposit build up and to indicate the efficacy of keep clean additives. The paper then goes on to describe high speed photographic techniques for studying the fuel spray characteristics of clean and fouled injectors in a firing engine.
X