Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Analysis of Interior Airflow in a Full-Scale Passenger-Compartment Model Using a Laser-Light-Sheet Method

1992-02-01
920206
Flow velocity distributions in the passenger compartment were measured from visualized images of particle flow paths obtained with a full-scale model. The flow paths were visualized using an approach that combined a particle tracing method with a pulse-laser light technique. Air was used as the fluid medium with the full-scale passenger compartment model and water was used as the fluid medium with a one-fourth scale model. A comparison of the results obtained with the two models confirmed that there was good agreement between the flow velocity distributions. Using the full-scale model, measurements were also made of the flow velocity distributions when two dummies were placed in the front-seats.
Technical Paper

Computer Simulation of Passenger Compartment Airflow

1988-11-01
881749
Numerical simulation of two-dimensional and three-dimensional air flow in automobile passenger compartments is described. The flow can be expressed by means of an incompressible Navier-Stokes equation for a narrow temperature range. The results were represented visually using animation and a color graphics system. The two-dimensional simulation showed that heat ansfer takes place chiefly by convection in vortices, and that the effects of heat transfer are minimal. In the three-dimensional analysis, shading was used to show the shape inside the compartment, and instantaneous stream lines and temperature distribution were depicted. The three-dimensional stream lines swirl upward at the front seat, and do not reach the back seat. The results gained from this study show that present theoretical flow analysis methods are close to being perfected. Further advances will require additional refinement of supercomputers and graphic engineering workstations.
Technical Paper

Determination of Flow Velocity Distribution in a Vehicle Interior Using a Visualization and Computation Techniques

1991-02-01
910310
In this work, the flow velocity distribution was determined by measurements of visualized flow, obtained with a one-fourth scale three-dimensional model, and by numerical analysis. The measurements of interior flow were obtained using a method which combined the particle-tracking technique, a basic method conventionally employed for flow visualization, with a pulsed-laser-light-sheet technique. Flow images taken with a video camera were then processed by means of an image processing system. Flow velocity distributions were obtained for two different discharge modes - a dashboard-vent mode in which air was discharged from four vents provided along the top of the dashboard, and a bi-level mode in which vents at the foot position were added to those of the first mode. Three-dimensional numerical analyses using a direct-simulation method were conducted to calculate the interior flow, and a comparison was made with the measured results obtained in the visualization experiment.
Technical Paper

Development of a Method for Predicting Comfortable Airflow in the Passenger Compartment

1992-09-01
922131
Indexes of thermal comfort, such as PMV (Predicted Mean Vote: ISO-7730), which have traditionally been applied to houses or buildings, are difficult to be applied to the automotive passenger compartment because of the large thermal differences that exist around vehicle occupants. In this work, the effects of temperature, airflow and solar radiation on passenger comfort in an air-conditioned vehicle interior were analyzed. Based on the results obtained, a method was devised for predicting the feeling of comfort passengers get from the thermal atmosphere in the vehicle interior. This paper explains the necessity of providing a diffused airflow in an air-conditioned passenger compartment, based on the effects of airflow on the feeling of comfort. Further, a new airflow control procedure is proposed which combines both diffused and concentrated airflow patterns to create a new variable airflow system.
Technical Paper

Development of an Innovative Energy Efficient Compact Cooling System “SLIM”

2012-04-16
2012-01-1201
To improve fuel consumption, hybrid system, turbo-charged engine, and clean diesel engine vehicles have been developed. These new systems require additional heat exchangers which reduces air flow rate within the heat exchangers of an engine cooling module. Consequently, power of cooling fan is increased. CalsonicKansei (CK) has developed a new cooling module “SLIM” (Single Layer Integrated cooling Module). This consists of a current condenser which is air-cooled and a new water-cooled condenser. This water cooled condenser is specifically designed to bring superheated refrigerant vapor to saturated conditions. The water-cooled condenser is located inside of the sub-radiator tank. The operation of the sub-radiator is to provide cooling to charge air cooler (CAC) and to water-cooled condenser. The switch of the operation is done automatically without any valve and any actuator.
Technical Paper

Visualization of the Heat Transfer Surface of EGR Cooler to Examine Soot Adhesion and Abruption Phenomena

2017-03-28
2017-01-0127
Among the emerging technologies in order to meet ever stringent emission and fuel consumption regulations, Exhaust Gas Recirculation (EGR) system is becoming one of the prerequisites particularly for diesel engines. Although EGR cooler is considered to be an effective measure for further performance enhancement, exhaust gas soot deposition may cause degradation of the cooling. To address this issue, the authors studied the visualization of the soot deposition and removal phenomena to understand its behavior. Based on thermophoresis theory, which indicates that the effect of thermophoresis depends on the temperature difference between the gas and the wall surface exposed to the gas, a visualization method using a heated glass window was developed. By using glass with the transparent conductive oxide: tin-doped indium oxide, temperature of the heated glass surface is raised.
X