Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Next Generation High Performance ATF for Slip-Controlled Automatic Transmission

1997-10-01
972927
A slip-controlled lock-up clutch system Is very efficient in improving the fuel economy of automatic transmission (AT) equipped vehicles. However, a special automatic transmission fluid (ATF) which combines an anti-shudder property with high torque capacity is required for this system. In this study, we established additive technology for ATF having a sufficient anti-shudder property and high torque capacity. Based on the technology, new ATF: ATF-T4 was developed. It was confirmed in actual AT tests that ATF-T4 has excellent anti-shudder durability and high torque capacity. Furthermore, ATF-T4 has good SAE No. 2 friction characteristics, oxidation stability, compatibility with materials (elastomers, nylons, etc.) and viscosity at low temperatures.
Technical Paper

Development of Automatic Transmission Fluid for Slip-Controlled Lock-Up Clutch Systems

1995-10-01
952348
Slip-controlled lock-up clutch systems are very efficient and greatly improve fuel economy. On the other hand, these systems can cause unstable vibrations including those known as “shudder vibrations”. In this study, the authors made a theoretical analysis of these unstable vibrations to clarify the fundamental frictional properties of automatic transmission fluids (ATFs) required for slip-controlled lock-up clutch systems. Based on this analysis, we established lubricant technology having a sufficient anti-shudder property and high torque capacity. Further, we developed a new test apparatus to evaluate the anti-shudder durability for lubricant development.
Technical Paper

Experimental Study on Viscosity-Shear Characteristics of Lubricating Oils

1995-02-01
951029
The viscosity of automotive lubricants containing polymers decreases temporarily in the oil films of sliding parts with the increase in shear rate. This decrease sometimes causes surface damages such as bearing seizure and gear pitting. This paper describes the effect of polymers and base oils on viscosity under high shear rate conditions. The viscometer was newly developed to evaluate the viscosity at high shear rates. Shear rate can vary between 105 sec-1 and 106 sec-1. By using the viscometer, the effects of various factors such as polymer type, molecular weight, polar group and concentration on shear viscosity were investigated. The effects of polymer solubility and molecular weight distribution of base oils were also investigated.
Technical Paper

Effect of Gasoline Engine Oil Components on Intake Valve Deposit

1993-10-01
932792
This paper describes lubricant technology which helps to prevent intake valve deposit (IVD) formation for use with conventional gasolines without detergents, as well as the IVD evaluation method used in testing. The FED 3462 method was modified to establish a new panel coking test method, with excellent correlation with the engine stand IVD test, for the quantitative evaluation of IVD. Tests have shown that IVD increases when the volatility of base oils becomes higher due to condensation and polymerization of engine oil additives. Furthermore, viscosity index improvers, metallic detergents and ashless dispersants have considerable effect on IVD formation. Based on various experiments, the authors have established a formulation technology for engine oils to lower IVD, which they incorporated in two newly formulated SG oils with lower IVD than conventional 5W-30 SG oil.
Technical Paper

An Electronically Controlled Engine Mount Using Electro-Rheological Fluid

1992-10-01
922290
This paper describes a newly developed prototype engine mount which is electronically controlled for variable spring and damping force. The controllability was accomplished by applying Electro-Rheological (ER) fluid whose apparent viscosity can be varied by applied electric field strength. Main attractive characteristics of ER fluid are wide variation of its apparent viscosity and quick response time, and one of the promising applications is a controllable damper. In the present paper, a prototype engine mount was constructed and its typical performance was investigated, where all the experiments were conducted under constant vibration amplitude to examine the amplitude dependence of the ER characteristics on ER devices. On the basis of the experimental results, numerical simulations of vibration control with ER engine mount and an adaptive neural-net control system were conducted.
Technical Paper

Formulation Technology for Low Phosphorus Gasoline Engine Oils

1992-10-01
922301
The effect of phosphorus concentration in gasoline engine oils on the valve train wear was experimentally investigated by using the JASO M328-91 3A valve train wear (3A-VTW) test method. The phosphorus concentration is determined proportionally to the amount of zinc dithiophosphate (ZDDP), which is formulated as both antiwear agent and antioxidant. Lower concentrations of ZDDP generally bring about larger wear in the valve train. However, it was found from the experiments that valve train wear remained low despite a decrease of phosphorus concentration when secondary ZDDPs with short alkyl chain together with appropriate ashless dispersants were selected. Since adsorptivity of secondary ZDDPs with short alkyl chain lengths onto rubbing metal surfaces is higher than that of primary types, the secondary types give excellent antiwear characteristics.
X