Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Measurement of Reference Dynamic Pressure in Open-Jet Automotive Wind Tunnels

1992-02-01
920344
In automotive open-jet wind tunnels reference velocity is usually measured in terms of a static pressure difference between two different cross-sectional areas of the tunnel. Most commonly used are two sections within the nozzle (Method 1: ΔP-Nozzle). Sometimes, the reference velocity is deduced from the static pressure difference between settling chamber and plenum (Method 2: ΔP-Plenum). Investigations in three full-scale open-jet automotive wind tunnels have clearly shown that determination of reference dynamic pressure according to ΔP-Plenum is physically incorrect. Basically, all aerodynamic coefficients, including drag coefficient, obtained by this method are too low. For test objects like cars and vans it was found that the error ΔcD depends on the test object's drag blockage in an open-jet wind tunnel.
Technical Paper

The Porsche Wind Tunnel Floor-Boundary-Layer Control - A Comparison with Road Data and Results from Moving Belt

1992-02-01
920346
The design of the PORSCHE wind tunnels - two facilities, one in full- and the other in quarter-scale - was determined by the demand for simulating both passenger car models and racing vehicles. One peculiarity, the very low ride height of the latter requires a reduction of the oncoming boundary layer that develops along the test- section floor. The number of difficult practical engineering problems in using and operating full-scale moving belts (*Bearman et al. [14]), led to the development of two suction systems using porous plates in the test section floor. These have been installed in the full-scale and in the 1:4 - scale windtunnels. For verification or optimization of the originally estimated suction rates required to meet realistic road conditions, a number of experiments on the road and in a moving-belt facility were conducted and the results compared to values from the suction facilities.
Technical Paper

Influence of Test-Section Length and Collector Area on Measurements in ¾-Open-Jet Automotive Wind Tunnels

1988-02-01
880251
A detailed investigation of aerodynamic car testing in ¾-open-test-sections was made. Herein two main influencing variables (dimensionless length scales) could be identified: first, the relative length of the ¾-open-test-section influences the static pressure gradient along the x-axis and, second, the relative collector area has large effects on the wake of a car. The measured values (i.e. drag) are mainly determined by a combined effect of these two parameters. The basic investigation was made in the Porsche 1:4 model-wind-tunnel with two different types of vehicles {sportscar and van) and in two different scales (1:4, 1:5). The results are graphically summarized. This diagram can predict the differences between full size open-jet-wind-tunnels. These predictions were verified by measuring Porsche production cars and the Porsche calibration car in three other automotive wind-tunnels.
X