Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Snowmobile Cornering and Acceleration Data from On-Snow Testing

2015-04-14
2015-01-1431
Snowmobile acceleration, braking and cornering performance data are not well developed for use in accident reconstruction. Linear acceleration and braking data published by D'Addario[1] gives results for testing on 4 snowmobiles of various make and model. This paper presents the results of on-snow tests performed in 2014 which include acceleration and cornering maneuvers that have not been published previously. Maximum and average cornering speeds and corresponding lateral accelerations are presented for turns of radius 20, 35 and 65 feet (6.1, 10.7 and 19.8 meters) on level, packed snow. Performance values for acceleration, braking, and cornering are determined in tests with and without a passenger. Results of linear acceleration and braking tests were found to be comparable to the previously published work. The data are useful in snowmobile accident reconstruction for certain types of snowmobile motion analyses.
Technical Paper

Methods of Occupant Kinematics Analysis in Automobile Crashes

2002-03-04
2002-01-0536
Understanding occupant kinematics is an important part of accident reconstruction, particularly with respect to injury causation. Injuries are generally sustained as the occupant interacts with the vehicle interior surfaces and is rapidly accelerated to the struck component's post-impact velocity. This paper describes some methods for assessing occupant kinematics in a collision, and discusses their limitations. A useful technique is presented which is based on free-body analysis and can be used to establish an occupant's path of motion relative to the vehicle, locate the point of occupant contact, and determine the occupant's velocity relative to that contact location.
Technical Paper

Physical Evidence Analysis and Roll Velocity Effects in Rollover Accident Reconstruction

2001-03-05
2001-01-1284
Rollover accidents often have a vast amount of information available for determining vehicle and occupant kinetics and kinematics. Physical evidence and photographs of the accident scene and vehicle can be used to determine trajectories, distances, velocities and orientations. The direction, angle, and chronological order of scrapes or scratch patterns and other directional indicators on the vehicle peripheral surfaces are typically used to reconstruct the vehicle orientation throughout the rollover sequence. Evidence from the scene and vehicle, however, can sometimes appear inconsistent, because they suggest a substantially different vehicle orientation at a particular contact point. An apparent inconsistency of this nature can often be corrected by accounting for the effects of vehicle roll velocity during surface contacts.
Technical Paper

Characteristics of Seat Belt Restraint System Markings

2000-03-06
2000-01-1317
Markings or observable anomalies on seat belt webbing and hardware can be classified into two categories: (1) marks caused by collision forces, or “loading marks”; and (2) marks that are created by non-accident situations, or “noncollision marks”. In a previous work, a survey of the driver's seat belt of 307 vehicles that had never experienced a collision was conducted, and several examples of marks created by normal, everyday usage, or “normal usage marks” were presented. It was found that some normal usage marks were visually similar to loading marks. This paper presents several examples comparing loading marks to visually similar normal usage marks and discusses the important similarities and differences.
Technical Paper

Seat Belt Survey: Identification and Assessment of Noncollision Markings

1999-03-01
1999-01-0441
The assessment of seat belt usage during a collision is typically made by considering four types of evidence: (1) the nature and location of the occupant’s injuries, (2) the presence or absence of occupant contact marks in the passenger compartment, (3) the occupant’s final position and (4) markings on the restraint system. This paper focuses specifically on seat belt restraint system markings. Markings or observable anomalies on the webbing and restraint system hardware can be classified into two categories: (1) those caused by collision forces, or “loading marks” and (2) those created by noncollision situations, or “normal usage marks”. Some normal usage marks can appear visually similar to loading marks. The purpose of this paper is to help the investigator distinguish between occupant loading marks and normal usage marks by presenting examples of marks found on belt restraint systems that have never experienced occupant loading in a collision.
Technical Paper

Determination of Vehicle Crush from Two Photographs and the Use of 3D Displacement Vectors in Accident Reconstruction

1991-02-01
910118
Given two or more photos of an accident vehicle (non-stereo pairs such as police photos) an estimate of the deformation (crush) of the vehicle may be obtained by application of camera reverse-projection, using two or more cameras and an exemplar vehicle. A single camera technique familiar to accident scene investigators is modified for this application. The methodology is described within the context of an experiment comparing results obtained by camera reverse projection to actual measured crush. A method of displaying crush results known as “displacement vectors” is presented and examples are illustrated. The technique has been found useful for measurement of 3-dimensional crush.
X