Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Airborne Trace Organic Contaminant Removal Using Thermally Regenerable Multi-Media Layered Sorbents

1991-07-01
911540
A cyclic two-step process is described which forms the basis for a simple and highly efficient air purification technology. Low molecular weight organic vapors are removed from contaminated airstreams by passage through an optimized sequence of sorbent media layers. The contaminant loaded sorbents are subsequently regenerated by thermal desorption into a low volume inert gas environment. A mixture of airborne organic contaminants consisting of acetone, 2-butanone, ethyl acetate, Freon-113 and methyl chloroform has been quantitatively removed from breathing quality air using this technique. The airborne concentrations of all contaminants have been reduced from initial Spacecraft Maximum Allowable Concentration (SMAC) levels to below the analytical limits of detection. No change in sorption efficiency was observed through multiple cycles of contaminant loading and sorbent regeneration via thermal desorption.
Technical Paper

Ambient Temperature Removal of Problematic Organic Compounds from ISS Wastewater

2002-07-15
2002-01-2534
Small, highly polar organics such as urea, alcohols, acetone, and glycols are not easily removed by the International Space Station's Water Recovery System. The current design utilizes the Volatile Removal Assembly (VRA) which operates at 125°C to catalytically oxidize these contaminants. Since decomposition of these organics under milder conditions would be beneficial, several ambient temperature biocatalytic and catalytic processes were evaluated in our laboratory. Enzymatic oxidation and ambient temperature heterogeneous catalytic oxidation of these contaminants were explored. Oxidation of alcohols proceeded rapidly using alcohol oxidase; however, effective enzymes to degrade other contaminants except urea were not found. Importantly, both alcohols and glycols were efficiently oxidized at ambient temperature using a highly active, bimetallic noble metal catalyst.
Technical Paper

Development and Testing of a Microwave Powered Regenerable Air Purification Technology Demonstrator

2002-07-15
2002-01-2403
Dielectric heating via microwave irradiation of contaminant laden sorbents offers distinct advantages in comparison to conventional thermal regeneration techniques. High temperatures may be achieved very rapidly because electromagnetic energy is absorbed directly by the sorbent material. A Technology Demonstrator, incorporating efficient rectangular waveguide based sorbent cartridge designs and effective microwave transmission systems was designed, fabricated and tested. Importantly, the performance of the Molecular Sieve 13X Waveguide Cartridge for the removal of water vapor, the Molecular Sieve 5A Waveguide Cartridge for the removal of CO2, and the Activated Carbon Waveguide Cartridge for removal of volatile organics from air, were each validated by successive sorption/ microwave desorption cycles.
Technical Paper

Immobilized Antimicrobials for the Enhanced Control of Microbial Contamination

2003-07-07
2003-01-2405
The active control of problematic microbial populations aboard spacecraft, and within future lunar and planetary habitats is a fundamental Advanced Life Support (ALS) requirement to ensure the long-term protection of crewmembers from infectious disease, and to shield materials and equipment from biofouling and biodegradation. The development of effective antimicrobial coatings and materials is an important first step towards achieving this goal and was the focus of our research. A variety of materials were coated with antibacterial and antifungal agents using covalent linkages. Substrates included both granular media and materials of construction. Granular media may be employed to reduce the number of viable microorganisms within flowing aqueous streams, to inhibit the colonization and formation of biofilms within piping, tubing and instrumentation, and to amplify the biocidal activity of low aqueous iodine concentrations.
Technical Paper

Mesoporous Oxide Supported Catalysts for Low Temperature Oxidation of Dissolved Organics in Spacecraft Wastewater Streams

2004-07-19
2004-01-2405
Novel mesoporous bimetallic oxidation catalysts are described, which are currently under development for the deep oxidation (mineralization) of aqueous organic contaminants in wastewater produced on-board manned spacecraft, and lunar and planetary habitats. The goal of the ongoing development program is to produce catalysts capable of organic contaminant mineralization near ambient temperature. Such a development will significantly reduce Equivalent System Mass (ESM) for the ISS Water Processor Assembly (WPA), which must operate at 135°C to convert organic carbon to CO2 and carboxylic acids. Improvements in catalyst performance were achieved due to the unique structural characteristics of mesoporous materials, which include a three-dimensional network of partially ordered interconnected mesopores (5-25 nm).
Technical Paper

Microwave-Powered Thermal Regeneration of Sorbents for CO2, Water Vapor and Trace Organic Contaminants

1997-07-01
972430
Feasibility of the use of microwave heating to achieve fast and efficient thermal regeneration of sorbents for the removal of carbon dioxide, water vapor, and trace organics from contaminated air streams has been conclusively demonstrated. The use of microwave power offers several advantages, including: improved heat transfer, lower thermal losses, improved power utilization, and enhanced operational capabilities. During the initial research, the sorption and microwave-powered thermal desorption of acetone, trichloroethylene (TCE), carbon dioxide, and water vapor was studied at 2.45 GHz using a rectangular waveguide based test apparatus. Both activated carbon and Carbosieve S-III were identified as excellent microwave regenerable sorbents for use in the removal of airborne organics. Water loaded silica gel, Molecular Sieve 13X, and Molecular Sieve 5A were also effectively regenerated under microwave irradiation at this frequency.
X