Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Biomechanical Tolerance of the Cranium

1994-09-01
941727
The objective of the study was to investigate the biomechanical response of the intact cranium. Unembalmed human cadavers were used in the study. The specimens were transected at the base of the skull leaving the intracranial contents intact; x-ray and computed tomography (CT) scans were obtained. They were fixed in a specially designed frame at the auditory meatus level and placed on the platform of an electrohydraulic testing device via a six-axis load cell. Following radiography, quasistatic loading to failure was applied to one of the following sites: frontal, vertex, parietal, temporal, or occipital. Retroreflective targets were placed in two mutually orthogonal planes to record the localized temporal kinematics. Applied load and piston displacement, and the output generalized force (and moment) histories were recorded using a modular digital data acquisition system. After the test, x-ray and CT images were obtained, and defleshing was done.
Technical Paper

Thoracic Deformation Contours in a Frontal Impact

1991-10-01
912891
The objective of the study was to document the thoracic deformation contours in a simulated frontal impact. Unembalmed human cadavers and the Hybrid III anthropomorphic manikins were tested. Data from the newly developed External Peripheral Instrument for Deformation Measurement (EPIDM) was used to derive deformation patterns at upper and lower thoracic levels. Deceleration sled tests were conducted on three-point belt restrained surrogates positioned in the driver's seat (no steering assembly) using a horizontal impact test sled at velocities of approximately 14.0 m/s. Lap and shoulder belt forces were recorded with seat belt transducers. The experimental protocol included a Hybrid III manikin experiment followed by the human cadaver test. Both surrogates were studied under similar input and instrumentation conditions, and identical data acquisition and analysis procedures were used. All six testedcadavers demonstrated multiple bilateral rib fractures.
Technical Paper

Biodynamics of the Total Human Cadaveric Cervical Spine

1990-10-01
902309
Spinal trauma produced from motor vehicle accidents, diving accidents, or falls occur at high rates of loading. This study was undertaken to reproduce clinically relevant cervical spine injuries under controlled conditions. Six isolated head - T2 human cadaveric preparations were tested using an electrohydraulic piston actuator at loading rates from 295 to 813 cm/sec. The Hybrid III head-neck was tested similarly at rates from 401 to 683 cm/sec. The input forces for specimen tests were of higher magnitude and shorter duration than the distally measured forces. In contrast, the Hybrid III head-neck revealed similar magnitude and duration force traces from input to output. The specimen preparations were analyzed kinematically at 1200 frames/sec with 20 to 30 retroreflective targets fixed to each level of the cervical spine. With this technique it is possible to temporally follow cervical damage as a function of applied force.
Technical Paper

Kinematic and Anatomical Analysis of the Human Cervical Spinal Column Under Axial Loading

1989-10-01
892436
The patho-anatomic alterations due to vertical loading of the human cervical column were documented and correlated with biomechanical kinematic data. Seven fresh human cadaveric head-neck complexes were prepared, and six-axis load cells were placed at the proximal and distal ends of the specimens to document the gross biomechanical response. Retroreflective markers were placed on bony landmarks of vertebral bodies, articular facets, and spinous processes along the entire cervical column. Targets were also placed on the occiput and arch of C1. The localized movements of these markers were recorded using a video analyzer during the entire loading cycle. Pre-test two-dimensional, and three-dimensional computerized tomography (CT), and plane radiographs were taken. The specimens were loaded to failure using an electrohydraulic testing device at a rate of 2 mm/s.
Technical Paper

Steering Wheel Induced Facial Trauma

1988-10-01
881712
Studies were conducted on twenty-two fresh human cadavers to determine the probability of facial bone fracture following dynamic contact with steering wheel assemblies of both standard (a commercially available) and energy absorbing (EA) types. Using a specially designed and validated vertical-drop impact test system, either zygoma was impacted once onto the junction of the lower left spoke and rim with velocities ranging from 2.0 to 6.9 m/s. Generalized force histories were recorded with a six-axis load cell placed below the hub. The wheel was inclined 30 degrees to the horizontal. Steering wheel deformations were recorded with a system of potentiometers placed below the impact site on the wheel. Dynamic forces at the zygoma (impact site) were computed using transformation principles. A triaxial accelerometer was placed at the posterior parietal region of the specimen opposite to the impact site to record acceleration histories. High speed photography documented the kinematics.
X