Refine Your Search

Topic

Search Results

Technical Paper

How Cylinder Cooling and Liner Temperature Profiles Affect NO Emissions: A Device for R&D

2016-04-05
2016-01-0983
This paper presents details of the development of, and experimental results from, an internal combustion engine dynamic cylinder heat transfer control device for use on single-cylinder research engines. This device replicates the varying temperature profile and heat transfer distribution circumferentially around a cylinder in a multicylinder engine. This circumferential temperature distribution varies around a cylinder because of the location of, or lack of coolant passages around the cylinders, and varies from cylinder to cylinder as a result of the flow of the coolant through these passages as it accumulates thermal energy and increases in temperature. This temperature distribution is important because it directly affects the NO emissions from each cylinder, as will be seen in the experimental results.
Technical Paper

Development of a Third Generation Dynamic Intake Air Simulator for Single-Cylinder Test Engines

2015-04-14
2015-01-0885
This paper details the development of a new dynamic Intake Air Simulator (IAS) for use on single-cylinder test engines, where the gas dynamics are controlled to accurately simulate those on a multi-cylinder engine during transient or steady-state operation. The third generation of Intake Air Simulators (IAS3) continues a development of new technology in the Powertrain Control Research Laboratory (PCRL) that replicates the multi-cylinder engine instantaneous intake gas dynamics on the single-cylinder engine, as well as the control of other boundary conditions. This is accomplished by exactly replicating the intake runner geometry between the plenum and the engine intake valve, and dynamically controlling the instantaneous plenum pressure feeding that runner, to replicate the instantaneous multi-cylinder engine intake flow.
Technical Paper

Estimating Instantaneous Losses Within a Firing IC Engine Using Synthetic Variables

2011-04-12
2011-01-0611
A new method for instantaneous friction estimation in firing internal combustion engines has been developed in the Powertrain Control Research Laboratory (PCRL) at the University of Wisconsin - Madison. This Synthetic Variable approach, which has previously been used for combustion quality diagnostics, focuses on carefully measuring instantaneous engine speed and other easily measurable engine variables and combining them with dynamic models of other engine processes. This approach numerically strips away the dynamic effects that mask friction effects on engine speed and reveals friction estimates with clarity. This information could be useful for engine designers and developers to assist in accurately understanding the sources of instantaneous friction within the running engine. The friction results from these studies have been very encouraging.
Journal Article

Virtual Multi-Cylinder Engine Transient Test System

2009-09-13
2009-24-0106
Researchers at the Powertrain Control Research Laboratory (PCRL) at the University of Wisconsin-Madison have developed a transient test system for single-cylinder engines that accurately replicates the dynamics of a multi-cylinder engine. The overall system can perform very rapid transients in excess of 10,000 rpm/second, and also replicates the rotational dynamics, intake gas dynamics, and heat transfer dynamics of a multi-cylinder engine. Testing results using this system accurately represent what would be found in the multi-cylinder engine counterpart. Therefore, engine developments can be refined to a much greater degree at lower cost, and these changes directly incorporated in the multi-cylinder engine with minimal modification. More importantly, various standardized emission tests such as the cold-start, FTP or ETC, can be run on this single-cylinder engine.
Technical Paper

The Design of Low-Inertia, High-Speed External Gear Pump/Motors for Hydrostatic Dynamometer Systems

2009-04-20
2009-01-1117
The demand for transient dynamometer testing systems is on the rise in the automotive industry. A useful power transmitting device for these systems is a hydraulic pump/motor due to its extremely low-inertia and minimal maintenance requirements. For a high-speed hydrostatic dynamometer system to be commercially acceptable, a pump/motor capable of speeds in excess of 8,000 RPM must be available with appropriate power capacity. Current industrial solutions offer speeds up to 3,000 RPM and 5,500 RPM respectively for external gear and piston pump designs and are therefore unsuitable for testing the upper speed ranges of numerous currently produced automotive engines. In this study, the effects of various pump housing, thrust plate and gear designs are examined utilizing Simerics’ PumpLinx pump/motor specific CFD software.
Technical Paper

Development of a State-of-the-Art Transient Test Facility for Powertrain R&D

2009-04-20
2009-01-1118
To serve the increasing demand of the automotive industry for transient systems evaluation, the Powertrain Control Research Laboratory (PCRL) has developed a transient test facility which uses high-bandwidth hydraulic dynamometers for hardware-in-the-loop powertrain simulation and testing. Following building renovation in 2006, the research team assumed the task of reconfiguring the dynamometer laboratory into a state-of-the-art testing facility. This includes the relocation and design of support facilities for both single- and multi-cylinder engine transient test systems. This paper introduces the applications of transient testing facilities and describes the unique challenges faced by the research team to achieve a versatile powertrain research environment with emphasis on accessibility and optimal space utilization, maintainability, and comprehensive documentation to aid future research endeavors.
Technical Paper

A Transient Heat Transfer System for Research Engines

2007-04-16
2007-01-0975
An ongoing goal of the Powertrain Control Research Laboratory (PCRL) at the University of Wisconsin-Madison has been to expand and improve the ability of the single cylinder internal combustion research engine to represent its multi-cylinder engine counterpart. To date, the PCRL single cylinder engine test system is able to replicate both the rotational dynamics (SAE #2004-01-0305) and intake manifold dynamics (SAE #2006-01-1074) of a multi cylinder engine using a single cylinder research engine. Another area of interest is the replication of multi-cylinder engine cold start emissions data with a single-cylinder engine test system. For this replication to occur, the single-cylinder engine must experience heat transfer to the engine coolant as if it were part of a multi-cylinder engine, in addition to the other multi-cylinder engine transient effects.
Technical Paper

Simulating Transient Multi-Cylinder Engine Gas Exchange Dynamics on a Single-Cylinder Research Engine

2006-04-03
2006-01-1074
This paper provides design, development details, and experimental data of an invention that is able to replicate the transient intake gas dynamics of a multi-cylinder engine on a single-cylinder research engine. This invention directly addresses and solves a significant problem that has persisted in the engine research and development community for over 50 years. Single-cylinder engines have many attractive attributes for use in research and development of multi-cylinder engines, due to their low cost, flexibility, and easy access for instrumentation. However, engine manufacturers continue to decrease the use of these engines in the engine development process because their dynamic and transient behaviors differ significantly from that of the multi-cylinder engine. The most significant differences are in rotational dynamics, gas exchange dynamics, and inter-cylinder dynamic coupling.
Technical Paper

A Transient Test System for Single Cylinder Research Engines With Real Time Simulation of Multi-Cylinder Crankshaft and Intake Manifold Dynamics

2004-03-08
2004-01-0305
A new high-bandwidth transient test system is being developed that allows a single cylinder research engine to be tested under conditions nearly identical to those experienced by individual cylinders of a multi-cylinder engine. The system consists of two unique test components: a high bandwidth transient hydrostatic dynamometer capable of simulating the combustion and rotational dynamics of a multi-cylinder engine, and an air intake simulator that pulls air from the intake manifold plenum to simulate air induction characteristics of the multi-cylinder engine. The system makes it possible to evaluate preliminary engine control strategies and perform more detailed hardware development early in a development program when representative multi-cylinder engines may not be available. This reduces engine development time and allows the transition to multi-cylinder engine hardware to proceed with fewer design changes and less cost.
Technical Paper

Developing a Generalized Modular Modeling Structure for Dynamic Engine Simulation

2002-03-04
2002-01-0202
Developing dynamic models of internal combustion engines can be very challenging because of the broad range of components that comprise the engine, as well as the range of engineering disciplines that are brought to bear in the design. The task is further complicated because the goals of such a model can vary immensely depending upon its use, and in a high-quality dynamic model these goals will drive the overall structure and fidelity of the model. Note that the quality or usefulness of the dynamic model is independent of its fidelity. This paper presents a generalized modular engine modeling structure, developed using MathWorks' MATLAB/Simulink software, which can be used in developing dynamic models of internal combustion engines or other dynamic powertrain models. The generalized block is discussed in detail, and specific applications of this block are shown within an overall engine model.
Technical Paper

A Transient Hydrostatic Dynamometer for Testing Single-Cylinder Prototypes of Multi-Cylinder Engines

2002-03-04
2002-01-0616
A new dynamometer system has been developed to improve the accuracy of tests that are run with a single cylinder version of a multi-cylinder engine. The dynamometer control system calculates the inertial torque and combustion torque that would normally be generated in a multi-cylinder engine. The system then applies the torque from the missing cylinders of the engine with the dynamometer. A unique high bandwidth hydraulic system is utilized to accurately apply these torque pulses. This allows the single-cylinder engine to have the identical instantaneous speed trajectory as the multi-cylinder engine, to test the single-cylinder engine at all engine speeds including very low speed operation, and to now do transient speed and load testing. Not only will this dramatically extend the capabilities of current single-cylinder engine test systems, but may open up new areas of research due to its transient testing capabilities.
Technical Paper

Simplified Engine Combustion Diagnostics Using “Synthetic” Variables

2000-03-06
2000-01-0364
This paper presents a diagnostics methodology that has applications to internal combustion engines as well as other dynamic devices. Included is an overview of the theoretical foundation of the approach, discussions on its application to internal combustion engine diagnostics, and experimental engine data showing the application of this methodology. Also included are the recent developments addressing issues of the effect of motoring compression and expansion work on crankshaft speed fluctuations and the resulting torque estimation. The methodology consists of a hard-wired nonlinear to linear transformation of engine variables that allow all subsequent diagnostics and control calculations to use linear mathematics, which significantly simplifies the size and complexity of the engine control and diagnostics strategy and code.
Technical Paper

A Modular HMMWV Dynamic Powertrain System Model

1999-03-01
1999-01-0740
A dynamic powertrain system model of the High Mobility Multi-Wheeled Vehicle (HMMWV) was created in the Powertrain Control Research Laboratory (PCRL) at the University of Wisconsin-Madison. Simulink graphical programming software was used to create the model. This dynamic model includes a Torsen differential model and a Hyrda-matic 4L80-E automatic transmission model as well as several other powertrain component models developed in the PCRL. Several component inertias and shaft stiffnesses are included in the dynamic model. The concepts of modularity, flexibility, and user-friendliness were emphasized during model development so that the system model would be a useful design tool. Simulation results from the model are shown.
Technical Paper

Using Dynamic Modular Diesel Engine Models To Understand System Interactions and Performance

1999-03-01
1999-01-0976
This paper reviews the engine modeling program in the Powertrain Control Research Laboratory at the University of Wisconsin-Madison, focuses on simulation results obtained from a complete modular turbocharged diesel engine dynamic model developed in this lab, and suggests ways that dynamic engine system models can be used in the design process. It examines the dynamic responses and interactions between various components in the engine system, looks at how these components affect the overall performance of the system in transient and steady state operation.
Technical Paper

A Study on Automatic Transmission System Optimization Using a HMMWV Dynamic Powertrain System Model

1999-03-01
1999-01-0977
This Paper introduces a modular, flexible and user-friendly dynamic powertrain model of the US Army's High Mobility Multi-Wheeled Vehicle (HMMWV). It includes the DDC 6.5L diesel engine, Hydra-matic 4L80-E automatic transmission, Torsen differentials, transfer case, and flexible drive and axle shafts. This model is used in a case study on transmission optimization design to demonstrate an application of the model. This study shows how combined optimization of the transmission hardware (clutch capacity) and control strategy (shift time) can be explored, and how the models can help the designer understand dynamic interactions as well as provide useful design guidance early in the system design phase.
Technical Paper

Powertrain Simulation of the M1A1 Abrams Using Modular Model Components

1998-02-23
980926
Powertrain simulation is becoming an increasingly valuable tool to evaluate new technologies proposed for future military vehicles. The powertrain of the M1A1 Abrams tank is currently being modeled in the Powertrain Control Research Laboratory (PCRL) at the University of Wisconsin-Madison. This powertrain model is to be integrated with other component models in an effort to produce a high fidelity simulation of the entire vehicle.
Technical Paper

The Development of Vehicular Powertrain System Modeling Methodologies: Philosphy and Implementation

1997-02-24
971089
Simulation is a useful tool which can significantly reduce resources invested during product development. Vehicle manufacturers are using simulations to aid in the evaluation of designs and components, including powertrain systems and controllers. These simulations can be made more useful by addressing issues such as flexibility, modularity, and causality. These issues and other aspects involved in the development and use of powertrain system simulations are discussed in this paper, and a case study of a powertrain system model developed in the PCRL using methodologies based on considerations of such issues is presented.
Technical Paper

Hardware Implementation Details and Test Results for a High-Bandwith, Hydrostatic Transient Engine Dynamometer System

1997-02-24
970025
Transient operation of automobile engines is known to contribute significantly to regulated exhaust emissions, and is also an area of drivability concerns. Furthermore, many on-board diagnostic algorithms do not perform well during transient operation and are often temporarily disabled to avoid problems. The inability to quickly and repeatedly test engines during transient conditions in a laboratory setting limits researchers and development engineers ability to produce more effective and robust algorithms to lower vehicle emissions. To meet this need, members of the Powertrain Control Research Laboratory (PCRL) at the University of Wisconsin-Madison have developed a high-bandwidth, hydrostatic dynamometer system that will enable researchers to explore transient characteristics of engines and powertrains in the laboratory.
Technical Paper

Fault Identification in Engine Misfire Using a Runner-by-Runner Intake Manifold Pressure Observer

1996-02-01
960327
A nonlinear model-based method for engine misfire detection has been proposed in the earlier work [2]. Many possible reasons for persistent cylinder misfire (e.g., a burned inlet valve or other faults), however, still need to be identified. Identification of engine misfire enables engineers, vehicle operators or technicians to trace the cause of misfire and to identify the faulty components in the engine. Also, a cylinder-by-cylinder manifold model will provide a considerably more accurate estimate of individual cylinder air flows. This paper develops a model-based nonlinear intake manifold pressure observer and an algorithm to identify a burned inlet valve. The proposed manifold model is a runner-by-runner model. A nonlinear observer using this runner-by-runner model can estimate the plenum pressure and all individual runner pressures and their subsequent flows. The estimate is then used as an indication of a faulty inlet valve, one of the possible causes of engine misfire.
Technical Paper

Dynamic Modeling and Simulation of the Ford AOD Automobile Transmission

1995-02-01
950899
A transmission system model for Ford Motor Company's automatic transmission (AOD) system used in the Lincoln Town Car has been developed using the free-body diagram method (Newtonian approach). This model is sophisticated enough to represent the dynamic behavior of the transmission system, yet simple enough to use as a real time computer simulation tool, and as an embedded model within a dynamic observer. The transmission system and torque converter models presented in this paper are part of a larger powertrain system model at the Powertrain Control Research Laboratory, University of Wisconsin-Madison.
X