Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Biomechanical Responses and Injury Assessment of Post Mortem Human Subjects in Various Rear-facing Seating Configurations

2021-04-02
2020-22-0005
The objective of this study was to generate biomechanical corridors from post-mortem human subjects (PMHS) in two different seatback recline angles in 56 km/h sled tests simulating a rear-facing occupant during a frontal vehicle impact. PMHS were placed in a production seat which included an integrated seat belt. To achieve a repeatable configuration, the seat was rigidized in the rearward direction using a reinforcing frame that allowed for adjustability in both seatback recline angle and head restraint position. The frame contained instrumentation to measure occupant loads applied to the head restraint and seatback. To measure PMHS kinematics, the head, spine, pelvis, and lower extremities were instrumented with accelerometers and angular rate sensors. Strain gages were attached to anterior and posterior aspects of the ribs, as well as the mid-shaft of the femora and tibiae, to determine fracture timing. A chestband was installed at the mid sternum to quantify chest deformation.
Technical Paper

Sources of Variability in Structural Bending Response of Pediatric and Adult Human Ribs in Dynamic Frontal Impacts

2018-11-12
2018-22-0004
Despite safety advances, thoracic injuries in motor vehicle crashes remain a significant source of morbidity and mortality, and rib fractures are the most prevalent of thoracic injuries. The objective of this study was to explore sources of variation in rib structural properties in order to identify sources of differential risk of rib fracture between vehicle occupants. A hierarchical model was employed to quantify the effects of demographic differences and rib geometry on structural properties including stiffness, force, displacement, and energy at failure and yield. Three-hundred forty-seven mid-level ribs from 182 individual anatomical donors were dynamically (~2 m/s) tested to failure in a simplified bending scenario mimicking a frontal thoracic impact. Individuals ranged in age from 4 - 108 years (mean 53 ± 23 years) and included 59 females and 123 males of diverse body sizes.
Technical Paper

Quantification of Skeletal and Soft Tissue Contributions to Thoracic Response in a Dynamic Frontal Loading Scenario

2018-11-12
2018-22-0005
Thoracic injuries continue to be a major health concern in motor vehicle crashes. Previous thoracic research has focused on 50th percentile males and utilized scaling techniques to apply results to different demographics. Individual rib testing offers the advantage of capturing demographic differences; however, understanding of rib properties in the context of the intact thorax is lacking. Therefore, the objective of this study was to obtain the data necessary to develop a transfer function between individual rib and thoracic response. A series of non-injurious frontal impacts were conducted on six PMHS, creating a loading environment commensurate to previously published individual rib testing. Each PMHS was tested in four tissue states: intact, intact with upper limbs removed, denuded, and eviscerated. Following eviscerated thoracic testing, eight individual mid-level ribs from each PMHS were removed and loaded to failure.
Technical Paper

Biomechanical Responses of PMHS Subjected to Abdominal Seatbelt Loading

2016-11-07
2016-22-0004
Past studies have found that a pressure based injury risk function was the best predictor of liver injuries due to blunt impacts. In an effort to expand upon these findings, this study investigated the biomechanical responses of the abdomen of post mortem human surrogates (PMHS) to high-speed seatbelt loading and developed external response targets in conjunction with proposing an abdominal injury criterion. A total of seven unembalmed PMHS, with an average mass and stature of 71 kg and 174 cm respectively were subjected to belt loading using a seatbelt pull mechanism, with the PMHS seated upright in a free-back configuration. A pneumatic piston pulled a seatbelt into the abdomen at the level of the umbilicus with a nominal peak penetration speed of 4.0 m/s. Pressure transducers were placed in the re-pressurized abdominal vasculature, including the inferior vena cava (IVC) and abdominal aorta, to measure internal pressure variation during the event.
Technical Paper

Pressure-Based Abdominal Injury Criteria Using Isolated Liver and Full-Body Post-Mortem Human Subject Impact Tests

2011-11-07
2011-22-0012
Liver trauma research suggests that rapidly increasing internal pressure plays a role in liver injury. Previous work has shown a correlation between pressure and liver injury in pressurized ex vivo human livers when subjected to blunt impacts. The purpose of this study was to extend the investigation of this relationship between pressure and liver injury by testing full-body post-mortem human surrogates (PMHS). Pressure-related variables were compared with one another and also to previously proposed biomechanical predictors of abdominal injury. Ten PMHS were tested. The abdominal vessels were pressurized to physiological levels using saline, and a pneumatic ram impacted the right side of the specimen ribcage at a nominal velocity of 7.0 m/s. Specimens were subjected to either lateral (n = 5) or oblique (n = 5) impacts, and the impact-induced pressures were measured by transducers inserted into the hepatic veins and inferior vena cava.
Technical Paper

Response of PMHS to High- and Low-Speed Oblique and Lateral Pneumatic Ram Impacts

2011-11-07
2011-22-0011
In ISO Technical Report 9790 (1999) normalized lateral and oblique thoracic force-time responses of PMHS subjected to blunt pendulum impacts at 4.3 m/s were deemed sufficiently similar to be grouped together in a single biomechanical response corridor. Shaw et al., (2006) presented results of paired oblique and lateral thoracic pneumatic ram impact tests to opposite sides of seven PMHS at sub-injurious speed (2.5 m/s). Normalized responses showed that oblique impacts resulted in more deflection and less force, whereas lateral impacts resulted in less deflection and more force. This study presents results of oblique and lateral thoracic impacts to PMHS at higher speeds (4.5 and 5.5 m/s) to assess whether lateral relative to oblique responses are different as observed by Shaw et al., or similar as observed by ISO.
Journal Article

Biomechanical Response of the Human Face and Corresponding Biofidelity of the FOCUS Headform

2010-04-12
2010-01-1317
In order to evaluate a human surrogate, the human and surrogate response must be defined. The purpose of this study was to evaluate the response of cadaver subjects to blunt impacts to the frontal bone, nasal bone and maxilla. Force-displacement corridors were developed based on the impact response of each region. Variation in the force-displacement response of the cadaver subjects due to the occurrence of fracture and fracture severity was demonstrated. Additionally, impacts were performed at matched locations using the Facial and Ocular CountermeasUre Safety (FOCUS) headform. The FOCUS headform is capable of measuring forces imposed onto facial structures using internal load cells. Based on the tests performed in this study, the nasal region of the FOCUS headform was found to be the most sensitive to impact location. Due to a wide range in geometrical characteristics, the nasal impact response varied significantly, resulting in wide corridors for human response.
Technical Paper

Using Pressure to Predict Liver Injury Risk from Blunt Impact

2007-10-29
2007-22-0017
Liver trauma research suggests that rapidly increasing internal pressure plays a role in causing blunt liver injury. Knowledge of the relationship between pressure and the likelihood of liver injury could be used to enhance the design of crash test dummies. The objectives of this study were (1) to characterize the relationship between impact-induced pressures and blunt liver injury in an experimental model to impacts of ex vivo organs; and (2) to compare human liver vascular pressure and tissue pressure in the parenchyma with other biomechanical variables as predictors of liver injury risk. Test specimens were 14 ex vivo human livers. Specimens were perfused with normal saline solution at physiological pressures, and a drop tower applied blunt impact at varying energies. Impact-induced pressures were measured by transducers inserted into the hepatic veins and the parenchyma (caudate lobe) of ex vivo specimens.
Technical Paper

Oblique and Lateral Impact Response of the PMHS Thorax

2006-11-06
2006-22-0007
This study characterizes the PMHS thoracic response to blunt impact in oblique and lateral directions. A significant amount of data has been collected from lateral impacts conducted on human cadavers. Substantially less data has been collected from impacts that are anterior of lateral in an oblique direction. In the past, data collected from the handful of oblique impact studies were considered to be similar enough to the data from purely lateral impacts such that the oblique data were combined with data from lateral impacts. Defining the biomechanical response of the PMHS thorax to oblique impact is of great importance in side impact vehicle crashes where the loading is often anterior-oblique in direction. Data in this study was obtained from a chestband placed on the thorax at the level of impact to measure thoracic deflection. Two low energy impacts were conducted on each of seven subjects at 2.5 m/s, with one lateral impact and one oblique impact to opposite sides of each PMHS.
Technical Paper

Application of Anthropomorphic Test Device Crash Test Kinetics to Post Mortem Human Subject Lower Extremity Testing

2006-04-03
2006-01-0251
The primary goal of the current study was to determine ATD lower extremity loading characteristics seen in frontal crash tests and apply these characteristics to isolated PMHS lower extremity impacts. Essentially, the study attempted to re-create the kinetics experienced by the Hybrid III 50th percentile ATD (HIII) in frontal crash tests and apply this crash test loading scenario directly to PMHS specimens efficiently and while maximizing the utilization of a small number of cadaver subjects. The secondary goal of this study was to determine the relationship between PMHS and HIII lower extremity impact response. Based on this comparison, it was anticipated that PMHS posterior cruciate ligament (PCL) injury threshold and timing could be related to knee shear in the HIII ball-bearing knee slider mechanism. HIII lower extremity loading was analyzed from a series of twenty-eight (28) frontal barrier or vehicle to vehicle crash tests from late model vehicles.
Technical Paper

Shoulder Injury and Response Due to Lateral Glenohumeral Joint Impact: An Analysis of Combined Data

2005-11-09
2005-22-0014
To date, several lateral impact studies (Bolte et al., 2000, 2003, Marth, 2002 and Compigne et al., 2004) have been performed on the shoulder to determine the response characteristics and injury threshold of the shoulder complex. Our understanding of the biomechanical response and injury tolerance of the shoulder would be improved if the results of these tests were combined. From a larger data base shoulder injury tolerance criteria can be developed as well as corridors for side impact dummies. Data from the study by Marth (2002, 12 tests) was combined with data from the previous studies. Twenty-two low speed tests (4.5 ± 0.7 m/s) and 9 high speed tests (6.7 ± 0.7 m/s) were selected from the combined data for developing corridors. Shoulder force, deflection and T1y acceleration corridors were developed using a minimization of cumulative variance technique.
Technical Paper

Shoulder Impact Response and Injury Due to Lateral and Oblique Loading

2003-10-27
2003-22-0003
Little is known about the response of the shoulder complex due to lateral and oblique loading. Increasing this knowledge of shoulder response due to these types of loading could aid in improving the biofidelity of the shoulder mechanisms of anthropomorphic test devices (ATDs). The first objective of this study was to define force versus deflection corridors for the shoulder corresponding to both lateral and oblique loading. A second focus of the shoulder research was to study the differences in potential injury between oblique and lateral loading. These objectives were carried out by combining previously published lateral impact data from 24 tests along with 14 additional recently completed lateral and oblique tests. The newly completed tests utilized a pneumatic ram to impact the shoulder of approximately fiftieth percentile sized cadavers at the level of the glenohumeral joint with a constant speed of approximately 4.4 m/sec.
Technical Paper

Development of a New Biofidelity Ranking System for Anthropomorphic Test Devices

2002-11-11
2002-22-0024
A new biofidelity assessment system is being developed and applied to three side impact dummies: the WorldSID-α, the ES-2 and the SID-HIII. This system quantifies (1) the ability of a dummy to load a vehicle as a cadaver does, “External Biofidelity,” and (2) the ability of a dummy to replicate those cadaver responses that best predict injury potential, “Internal Biofidelity.” The ranking system uses cadaver and dummy responses from head drop tests, thorax and shoulder pendulum tests, and whole body sled tests. Each test condition is assigned a weight factor based on the number of human subjects tested to form the biomechanical response corridor and how well the biofidelity tests represent FMVSS 214, side NCAP (SNCAP) and FMVSS 201 Pole crash environments.
Technical Paper

Shoulder Response Characteristics and Injury Due to Lateral Glenohumeral Joint Impacts

2000-11-01
2000-01-SC18
The objective of this study was to determine response characteristics and injury of the shoulder due to lateral impacts. The need for this data was heightened in the 1990s with increasing interest in harmonization of side impact standards, and questions regarding the measurement capabilities of dummies used in evaluating side impacts. A pneumatic impacting ram was employed in carrying out twenty-two lateral impacts to eleven unembalmed human cadavers at the level of the glenohumeral joint. Velocity of the ram at the time of impact was varied throughout the impacts from 3.5 to 7.0 m/sec, in an attempt to determine injury threshold. The cadavers were instrumented with tri-axial accelerometer blocks at ten locations in the shoulder region. Bony structures instrumented included the sternum, the first thoracic vertebra (T1), clavicles and scapulae. Output from the accelerometers was utilized to calculate impact forces and to examine the movement of the instrumented structures.
X