Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Detection of Gasoline Vehicles with Gross PM Emissions

2007-04-16
2007-01-1113
Light duty gasoline vehicles (LDGV) are estimated to contribute 40% of the total on-road mobile source tailpipe emissions of particulate matter (PM) in California. While considerable efforts have been made to reduce toxic diesel PM emissions going into the future, less emphasis has been placed on PM from LDGVs. The goals of this work were to characterize a small fleet of visibly smoking and high PM emitting LDGVs, to explore the potential PM-reduction benefits of Smog Check and of repairs, and to examine remote sensing devices (RSD) as a potential method for identifying high PM emitters in the in-use fleet. For this study, we recruited a fleet of eight vehicles covering a spectrum of PM emission levels. PM and criteria pollutant emissions were quantified on a dynamometer and CVS dilution tunnel system over the Unified Cycle using standard methods and real time PM instruments.
Technical Paper

Assessment of Particulate Matter Emissions from a Sample of In-Use ULEV and SULEV Vehicles

2006-04-03
2006-01-1076
Vehicles that meet the Federal Tier II and the California LEV II Vehicle Standards (e.g. ULEV and SULEV) are a rapidly growing percentage of the fleet. Sales weighted fleet average emissions of new vehicles are already below the LEV certification levels and should be below ULEV certification levels within two years. ULEV and SULEV vehicles represent the “typical” vehicle future for the next decade or two. Data on particulate emissions from these vehicles are currently very limited. In this study, emission tests using the standard Federal Test Procedure (FTP) were conducted on a small in-use vehicle fleet of ULEV and SULEV vehicles to determine their particulate matter mass emission rates, chemical compositions, particle numbers, and particle size distributions. Particulate sampling utilized Teflon filters for mass determination and quartz filters + PUF-XAD cartridges for chemical speciation. Each bag of the test was sampled separately.
Technical Paper

Measurement of Ambient Roadway and Vehicle Exhaust Emissions-An Assessment of Instrument Capability and Initial On-Road Test Results with an Advanced Low Emission Vehicle

2000-03-06
2000-01-1142
The College of Engineering-Center for Environmental Research and Technology at the University of California, Riverside and Honda Motor Company are conducting a cooperative research program to study the emission characteristics and evaluate the environmental impact of advanced technology vehicles designed to have emission rates at, or below, the California ULEV standard. This program involves a number of technical challenges relating to instrumentation capable of measuring emissions at these low levels and utilizing this instrumentation to gather data under realistic conditions that will allow assessments of the environmental impact of these advanced vehicle technologies. This paper presents results on the performance and suitability of a Fourier Transform Infrared (FTIR) based on-board measurement system developed principally by Honda R&D for this task. This system has been designed to simultaneously measure vehicle exhaust and ambient roadway pollutant concentrations.
X