Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Investigation of International Space Station Trace Contaminant Oxidation Catalyst Poisoning

1996-07-01
961517
The Trace Contaminant Control System (TCCS) removes most hazardous contaminants from the space station atmosphere using a carbon bed, but some must be destroyed in a high temperature catalytic oxidizer. While the oxidizer is protected from catalyst poisons by the carbon bed, if contaminant loads are greater than anticipated, the catalyst may be exposed to a variety of poisons. Thus, we studied the effect of halocarbons, sulfides and nitrogen compounds on the catalytic activity and the products produced. We found that even if poisoning occurs, the catalyst will recover, and will not produce toxic partial oxidation products.
Technical Paper

Dimethyl Ether as an Ignition Enhancer for Methanol-Fueled Diesel Engines

1991-10-01
912420
Methanol-fueled diesels may be an attractive means of meeting future, more restrictive diesel particulate standards since methanol combustion forms very little soot. Unfortunately, methanol's autoignition temperature is high, and some means of improving its ignition is required. Therefore, we have investigated the use of dimethyl ether (DME), aspirated with the combustion air, to enhance the ignition of the injected methanol. A small, on-board catalytic reactor could be used to generate DME from the methanol fuel. This system requires minimal modifications to the engine design, and does not require use of an additive or fuel other than methanol. In this study, we measured maximum cylinder pressure and rate of pressure rise, ignition delay, emissions, and relative efficiencies for a single-cylinder, direct injection, high-speed diesel engine operated on both diesel fuel and methanol-DME.
X