Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Modern Diesel Particulate Matter Measurements and the Application of Lessons Learned to 2007 Levels and Beyond

2005-04-11
2005-01-0194
Experimental tests were conducted to determine the sensitivity of Diesel particulate matter (PM) at a given engine operating condition using a single cylinder research engine at the University of Wisconsin Engine Research Center. Utilizing a full dilution tunnel with a second stage partial dilution tunnel, the PM emissions were characterized. Physical properties were measured with a variety of instruments including a Scanning Mobility Particle Sizer (SMPS), Tapered Element Oscillating Microbalance (TEOM) as well as traditional filter-based gravimetric measurements. Chemical composition was determined through the use of the Thermal/Optical Transmittance (TOT) Method, Ion Chromatography (IC) and Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP/OES). Particulate mass emissions were shown to be on the order of 0.05 g/bhp-hr for the light load engine operating condition selected.
Technical Paper

Effect of Fuel Composition on Combustion and Detailed Chemical/Physical Characteristics of Diesel Exhaust

2003-05-19
2003-01-1899
An experimental study was performed to investigate the effect of fuel composition on combustion, gaseous emissions, and detailed chemical composition and size distributions of diesel particulate matter (PM) in a modern heavy-duty diesel engine with the use of the enhanced full-dilution tunnel system of the Engine Research Center (ERC) of the UW-Madison. Detailed description of this system can be found in our previous reports [1,2]. The experiments were carried out on a single-cylinder 2.3-liter D.I. diesel engine equipped with an electronically controlled unit injection system. The operating conditions of the engine followed the California Air Resources Board (CARB) 8-mode test cycle. The fuels used in the current study include baseline No. 2 diesel (Fuel A: sulfur content = 352 ppm), ultra low sulfur diesel (Fuel B: sulfur content = 14 ppm), and Fisher-Tropsch (F-T) diesel (sulfur content = 0 ppm).
Technical Paper

Effect of Injection Timing on Detailed Chemical Composition and Particulate Size Distributions of Diesel Exhaust

2003-05-19
2003-01-1794
An experimental study was carried out to investigate the effects of fuel injection timing on detailed chemical composition and size distributions of diesel particulate matter (PM) and regulated gaseous emissions in a modern heavy-duty D.I. diesel engine. These measurements were made for two different diesel fuels: No. 2 diesel (Fuel A) and ultra low sulfur diesel (Fuel B). A single-cylinder 2.3-liter D.I. diesel engine equipped with an electronically controlled unit injection system was used in the experiments. PM measurements were made with an enhanced full-dilution tunnel system at the Engine Research Center (ERC) of the University of Wisconsin-Madison (UW-Madison) [1, 2]. The engine was run under 2 selected modes (25% and 75% loads at 1200 rpm) of the California Air Resources Board (CARB) 8-mode test cycle.
Technical Paper

Measurement of Trace Metal Composition in Diesel Engine Particulate and its Potential for Determining Oil Consumption: ICPMS (Inductively Coupled Plasma Mass Spectrometer) and ATOFMS (Aerosol Time of Flight Mass Spectrometer) Measurements

2003-03-03
2003-01-0076
Current regulations stipulate acceptable levels of particulate emissions based on the mass collected on filters obtained by sampling in diluted exhaust. Although precise, this gives us only aggregated information. If in addition to the mass based measurements, detailed chemical analysis of the particulate matter (PM) is performed, additional subtle information about the combustion process can be revealed. This paper reports the results of detailed chemical analysis of trace metal in the PM emitted from a single cylinder heavy-duty diesel engine. The trace metal concentrations are used as an indicator of oil consumption. Two techniques were used to make the trace metal concentration measurements. PM was captured on filters and trace metals were quantified with an Inductively Coupled Plasma Mass Spectrometer (ICPMS), and also an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) was used to perform particle size and composition measurements in real time.
X