Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

7-XDCT: Compact and Cost-Efficient Dual Clutch Transmission for Small and Mid-Size Vehicles

2013-04-08
2013-01-1271
The automotive industry continues to develop new powertrain technologies aimed at reducing overall vehicle level fuel consumption. The ongoing trends of “downsizing” and “down speeding” have led to the development of turbocharged engines with low displacement and high torque density. In order to meet the launch response requirements with these engines as well as fuel economy needs, transmissions with large ratio spreads will need to be developed. Due to the lack of torque amplification from the torque converter, the next generation of dual clutch transmissions (DCT) will need to have larger launch ratios and ratio spreads than currently available in production today. This paper discusses the development of a new family of DCT (called “xDCT”) for use in front wheel drive vehicles, aimed at meeting some of these challenges. The xDCT family features two innovative concepts, the idea of “gear generation” and “supported shifts”.
Technical Paper

Innovative xDCT Family of FEV - Extremely Compact 7 and 10 Speed DCTs

2013-01-09
2013-26-0120
Current production of Dual Clutch Transmissions (DCTs) feature a maximum of seven speeds, which can easily be realized using three main shafts and four shift sleeves. To increase the number of gears with conventional means, more gears, shift sleeves and shafts have to be added thus increasing size, weight and cost. With the “xDCT” family, FEV has developed a series of DCT concepts which effectively minimize mechanical complexity for any given number of gears by combining two innovative ideas: “Gear generation” and “supported shifts”. In order to “generate gears”, a switchable connection between the two input shafts is installed which allows to use all gears inside the transmission with both clutches. The main challenge then is to effectively use the large number of resulting gears in a shift schedule without torque interruption. The solution is to incorporate “supported shifts” during which torque fill-in for an AMT-style gear shift is provided by the next higher gear.
X