Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

A Comparative Assessment of High Speed Rotorcraft Concepts (HSRC): Reaction Driven Stopped Rotor/Wing Versus Variable Diameter Tiltrotor

1997-10-01
975548
The objective of this paper is to illustrate the methods and tools developed to size and synthesize a stopped rotor/wing vehicle using a reaction drive system, including how this design capability is incorporated into a sizing and synthesis tool, VASCOMP II. This new capability is used to design a vehicle capable of performing a V-22 escort mission, and a sized vehicle description with performance characteristics is presented. The resulting vehicle is then compared side-by-side to a variable diameter tiltrotor designed for the same mission. Results of this analysis indicate that the reaction-driven rotor concept holds promise relative to alternative concepts, but that the variable diameter tiltrotor has several inherent performance advantages. Additionally, the stopped rotor/wing needs considerably more development to reach maturity.
Technical Paper

An Assessment of a Reaction Driven Stopped Rotor/Wing Using Circulation Control in Forward Flight

1996-10-01
965612
The desire of achieving faster cruise speed for rotorcraft vehicles has been around since the inception of the helicopter. Many unconventional concepts have been considered and researched such as the advanced tilt rotor with canards, the tilt-wing, the folding tiltrotor, the coaxial propfan/folding tiltrotor, the variable diameter tiltrotor, and the stopped rotor/wing concept, in order to fulfill this goal. The most notable program which addressed the technology challenges of accomplishing a high speed civil transport mission is the High Speed Rotorcraft Concept (HSRC) program. Among the long list of potential configurations to fulfill the HSRC intended mission, the stopped rotor/wing is the least investigated due to the fact that the existing rotorcraft synthesis codes cannot handle this type of vehicle. In order to develop such a tool, a designer must understand the physics behind this unique concept.
Technical Paper

Variable Cycle Optimization for Supersonic Commercial Applications

2005-10-03
2005-01-3400
Variable cycle engines (VCEs) hold promise as an enabling technology for supersonic business jet (SBJ) applications. Fuel consumption can potentially be minimized by modulating the engine cycle between the subsonic and supersonic phases of flight. The additional flexibility may also contribute toward meeting takeoff and landing noise and emissions requirements. Several different concepts have been and are currently being investigated to achieve variable cycle operation. The core-driven fan stage (CDFS) variable cycle engine is perhaps the most mature concept since an engine of this type flew in the USAF Advanced Tactical Fighter prototype program in the 1990s. Therefore, this type of VCE is of particular interest for potential commercial application. To investigate the potential benefits of a CDFS variable cycle engine, a parametric model is developed using the NASA Numerical Propulsion System Simulation (NPSS).
X