Refine Your Search

Search Results

Author:
Technical Paper

Experimental Study of Flame Accelerated Ignition on Rapid Compression Machine and Heavy Duty Engine

2017-10-08
2017-01-2242
A new ignition method named Flame Accelerated Ignition (FAI) is proposed in this paper. The FAI system composes of a spark plug and a flame acceleration tunnel with annular obstacles inside. The FAI was experimentally investigated on a rapid compression machine (RCM) with optical accessibility and a single-cylinder heavy duty research engine. In RCM, the flame is significantly accelerated and the combustion process is evidently enhanced by FAI. The ignition delay and the combustion duration are both sharply decreased compared with conventional spark ignition (CSI) case. According to the optical diagnostics, the flame rushes out of the exit of the flame acceleration tunnel at maximum axial speed over 40 m/s, which exceeds 10 times that of CSI flame propagation. In radial direction, the flame curls outwards near the tunnel exit and keeps growing afterwards.
Technical Paper

Experimental Investigation of Improving Homogeneous Charge Induced Ignition (HCII) Combustion at Medium and High Load by Reducing Compression Ratio

2017-03-28
2017-01-0765
This research focuses on the potential of Homogeneous Charge Induced Ignition (HCII) combustion meeting the Euro V emission standard on a heavy-duty multi-cylinder engine using a simple after-treatment system. However, in our previous studies, it was found that the gasoline ratio was limited in HCII by the over-high compression ratio (CR). In this paper, the effects of reducing CR on the performances of HCII at medium and high loads were explored by experimental methods. It was found that by reducing CR from 18:1 to 16:1 the peak in-cylinder pressure and the peak pressure rise rate were effectively reduced and the gasoline ratio range could be obviously extended. Thus, the combustion and emission characteristics of HCII at medium and high loads were noticeably improved. Soot emissions can be significantly reduced because of the increase of premixed combustion ratio. The reduction could be over 50% especially at high load and high speed conditions.
Journal Article

Experimental Investigation of Homogeneous Charge Induced Ignition (HCII) with Low-Pressure Injection to Reduce PM Emissions in a Heavy-Duty Engine

2016-04-05
2016-01-0775
Homogeneous Charge Induced Ignition (HCII) combustion utilizes a port injection of high-volatile fuel to form a homogeneous charge and a direct injection of high ignitable fuel near the Top Dead Center (TDC) to trigger combustion. Compared to Conventional Diesel Combustion (CDC) with high injection pressures, HCII has the potential to achieve diesel-like thermal efficiency with significant reductions in NOx and PM emissions with relatively low-pressure injections, which would benefit the engine cost saving remarkably. In the first part of current investigation, experiments were conducted at medium load with single diesel injection strategy. HCII exhibited great potential of using low injection pressures to achieve low soot emissions. But the engine load for HCII was limited by high heat release rate. Thus, in the second and third part, experiments were performed at high and low load with double diesel injection strategy.
Technical Paper

An Experimental Study Using Spark-Assisted Stratified Compression Ignition (SSCI) Hybrid Combustion Mode for Engine Particle Number (PN) Reduction in a High Compression Ratio Gasoline Engine

2016-04-05
2016-01-0758
Particle Number (PN) have already been a big issue for developing high efficiency internal combustion engines (ICEs). In this study, controlled spark-assisted stratified compression ignition (SSCI) with moderate end-gas auto-ignition was used for reducing PN in a high compression ratio gasoline direct injection (GDI) engine. Under wide open throttle (WOT) and Maximum Brake Torque timing (MBT) condition, high external cooled exhaust gas recirculation (EGR) was filled in the cylinder, while two-stage direct injection was used to form desired stoichiometric but stratified mixture. SSCI combustion mode exhibits two-stage heat release, where the first stage is associated with flame propagation induced by spark ignition and the second stage is the result of moderate end-gas auto-ignition without pressure oscillation at the middle or late stage of the combustion process.
Technical Paper

Numerical Study of Gasoline Homogeneous Charge Induced Ignition (HCII) by Diesel with a Multi-Component Chemical Kinetic Mechanism

2016-04-05
2016-01-0784
Homogeneous Charge Induced Ignition (HCII) combustion is believed to be a promising approach to achieve clean and high efficiency combustion. HCII can be realized by using port-injection of the high-volatile fuel (gasoline) to prepare in-cylinder homogeneous charge and direct injection of the high-ignitable fuel (diesel) near the top dead center to control the start of combustion. In the current study, a numerical study was carried out to understand the mixing and auto-ignition process in HCII combustion. A multicomponent chemical kinetic mechanism for gasoline and diesel, consisting of n-heptane, iso-octane, ethanol, toluene, diisobutylene and n-decane, has been developed for predicting their ignition and oxidation. The final mechanism consists of 104 species and 398 reactions. This mechanism was validated with the experimental data of ignition delay times and laminar flame speeds for each component and real transportation fuels.
Technical Paper

Role of Wall Effect on Hot-Spot Induced Deflagration to Detonation in Iso-Octane/Air Mixture Under High Temperature and Pressure

2016-04-05
2016-01-0552
A 1-Dimensional (1-D) model of fluid dynamic and chemistry kinetics following hot spot auto-ignition has been developed to simulate the process from auto-ignition to pressure wave propagation. The role of wall effect on the physical-chemical interaction process is numerically studied. A pressure wave is generated after hot spot auto-ignition and gradually damped as it propagates. The reflection of the wall forms a reflected pressure wave with twice the amplitude of the incident wave near the wall. The superposition of the reflected and forward pressure waves reinforces the intensity of the initial pressure wave. Wall effect is determined by the distance between the hot spot center and the cylinder wall. Hot spot auto-ignition near the wall easily initiates detonation under high-temperature and high-pressure conditions because pressure wave reflection couples with chemical reactions and propagates in the mixture with high reactivity.
Technical Paper

Investigation into the Effect of Flame Propagation in the Gasoline Compression Ignition by Coupling G-Equation and Reduced Chemical Kinetics Combustion Model

2015-09-01
2015-01-1799
Gasoline Compression Ignition has been widely studied in recent years. The in-cylinder stratified charge in gasoline Partially Premixed Compression Ignition (PPCI) can extend the high load range with lower pressure rise rate than Homogeneous Charge Compression Ignition (HCCI). However, it is still not clear that whether there is flame propagation in the gasoline compression igntion mode and how the flame propagation influences the combustion process and pollution formation. In order to investigate the effect of flame, several gasoline compression ignition cases, including the single-stage and two-stage heat release processes, are simulated with the KIVA-3V Release 2 code in this study. The G-equation is employed to account for flame propagation, and the reduced i-octane/n-heptane mechanism is used to handle the chemical reactions. The results show that the flame propagation exists in the combustion process and it can accelerate the heat release slightly.
Technical Paper

The Effect of Oil Intrusion on Super Knock in Gasoline Engine

2014-04-01
2014-01-1224
Super knock which occurs in highly boosted spark ignition engines in low speed pre-ignition regime can lead to severe engine damage. However, super knock occurs occasionally, it is difficult to clearly identify the causes. The widely accepted assumption for the cause of this phenomenon is oil intrusion. Most of oils have been proved to have higher cetane number than n-heptane dose, indicating that the intruded oil is very liable to auto-ignition in a boosted engine. Although there have been reported the type of base oil and additive has significant effect on pre-ignition frequency, the oil induced super knock is still so far not supported by any direct evidence. This paper presents the effect of direct oil intrusion into cylinder on super knock. The experiment was carried out in a single cylinder engine. The diluted oil by gasoline with different ratio was directly injected into cylinder using a modified single-hole injector with 4MPa injection pressure.
Technical Paper

Numerical Resolution of Multiple Premixed Compression Ignition (MPCI) Mode and Partially Premixed Compression Ignition (PPCI) Mode for Low Octane Gasoline

2013-10-14
2013-01-2631
Two premixed compression ignition modes for low octane gasoline are numerically investigated. The multiple premixed compression ignition (MPCI) mode is featured with a sequence of “spray- combustion- spray- combustion”, while the partially premixed compression ignition (PPCI) mode is a sequence of “spray- spray- combustion”. This paper compares the combustion process of the two modes using multi-dimensional CFD code, KIVA-3v, which can perform chemical reaction calculations for different fuels by a discrete multiple component (DMC) method. The fuel used for simulation consists of 58.5% i-C8H18 and 41.5% n-C7H16 in volume, and has the same RON and similar physical properties to straight-run naphtha used in the experiment. The engine operating condition is fixed at a 1600rpm and 0.7 MPa IMEP. The injection strategies for these two modes are different. All of the parameters in the simulation come from the single cylinder engine experiments.
Technical Paper

Research on Gasoline Homogeneous Charge Induced Ignition (HCII) by Diesel in a Light-Duty Engine

2013-04-08
2013-01-1666
Gasoline engines suffer low thermal efficiency and diesel engines have the emission problem of the trade-off between NOx and soot emissions. Homogeneous Charge Induced Ignition (HCII) is introduced using a port injection of gasoline to form a homogeneous charge and using a direct injection of diesel fuel to ignite. HCII has the potential to achieve high thermal efficiency and low emission combustion. However, HCII combustion mode still has problems of high THC emissions at low load and high pressure rise rate at high load. In order to improve the gasoline reactivity and reduce THC emissions, double injection of diesel was applied in HCII mode. In order to reduce peak pressure rise rate (PPRR), a two-staged high-temperature heat release is achieved at suitable engine condition. The effects of HCII mode on combustion and emission characteristics are studied in a light-duty engine.
Technical Paper

Effects of Mixing and Chemical Parameters on Homogeneous Charge Induced Ignition Combustion Based on a Light-Duty Diesel Engine with Ultra-Low NOx and Soot Emissions and High Thermal Efficiency

2013-04-08
2013-01-0914
A Homogeneous charge induced ignition (HCII) combustion, realized by in-cylinder fuel blending of gasoline and diesel fuel, was developed and carefully optimized, both on a single cylinder and a multi-cylinder light-duty diesel engines, for high thermal efficiency and near zero emissions in a wide engine-operation range up to IMEP of 1 MPa. The effects of mixing and chemical parameters of HCII combustion, which can be controlled by production-viable hard-ware using conventional gasoline and diesel fuel, include injection timing of diesel fuel, injection rate pattern of diesel fuel (such as split injection), the gasoline/diesel ratio, boost pressure and exhaust gas recirculation (EGR). Based on a single cylinder engine, the experimental result shows that the interaction of the mentioned control parameters plays decisive role in determination of exhaust emissions and thermal efficiency.
Technical Paper

Knocking Suppression using Stratified Stoichiometric Mixture in a DISI Engine

2010-04-12
2010-01-0597
Knocking is the main obstacle of increasing compression ratio to improve the thermal efficiency of gasoline engines. In this paper, the concept of stratified stoichiometric mixture (SSM) was proposed to suppress knocking in gasoline engines. The rich mixture near the spark plug increases the speed of the flame propagation and the lean mixture in the end gas suppresses the auto ignition. The overall air/fuel ratio keeps stoichiometric to solve the emission problem using three way catalysts (TWC). Moreover, both the rich zone and lean zone lead to soot free combustion due to homogeneous mixture. The effect on the knocking of homogeneous and stratified mixture was studied in a direct injection spark ignition (DISI) engine using numerical simulation and experimental investigation respectively.
Technical Paper

Influence of Methanol Gasoline Blend Fuel on Engine and Catalyst Performance

2009-04-20
2009-01-1182
According to China's “oil-poor, gas-litte, coal-rich” structure of energy resources, to promote the development of coal-based methanol fuel as a clean alternative to gasoline and diesel fuel is one of the most realistic options. So the adaptability of methanol gasoline blend fuel used in the gasoline engine and vehilce should be investigated. Engine load performance, engine out emission, air fuel ratio variation and combustion characteristics were tested in a PFI Euro III gasoline engine using gasoline, M10, M15, M20, M30 as fuel without any modification of the engine. Air fuel ratio, light-off temperature and load characteristics of catalystic conversion coefficient were also investigated. And effects of methanol content on fuel consumption and vehicle out emissions of a Euro - vehicle are analyzed.
Technical Paper

Effect of Urea Thermal Decomposition on Diesel NOx-SCR Aftertreatment Systems

2008-06-23
2008-01-1544
Urea Selective Catalytic Reduction (SCR) has been proven to significantly reduce NOx emissions from diesel engines. The thermal decomposition of urea, which forms the ammonia as the reactant, has a crucial effect on the performance and durability of the NOx-SCR system. The incomplete thermal decomposition of urea not only reduces the NOx conversion ratio and increases the ammonia slip, but also leads to deposit formation on the catalyst surface, which will block the pore and the active sites of the catalyst and then decreases the durability of the SCR systems. In this paper, the urea thermolysis was measured using the Thermal Gravimetric Analysis (TGA) and Fourier Transform Infrared Spectroscopy (FTIR). Then, the performance of the SCR systems under different injection parameters of the Urea-water solution was investigated on a diesel engine test bench. Finally, the deposits on the catalyst were also analyzed using TGA and FTIR.
Technical Paper

Effects of Different Biodiesels and their Blends with Oxygenated Additives on Emissions from a Diesel Engine

2008-06-23
2008-01-1812
Biodiesel is an alternative, renewable, clean fuel, which can effectively reduce emissions from diesel engines. However, the effects of biodiesel on engine emissions vary due to the difference in source. In this paper, performance of five different biodiesels was studied: CME, SME, RME, PME and WME. Engine power, fuel consumption, gaseous emissions and PM, DS and none soot fraction (NSF) were investigated in a Cummins ISBe6 Euro III diesel engine fueled with five biodiesels respectively and compared with the diesel fuel. Results revealed that using different biodiesels resulted in PM reductions ranging from 53% to 69%, which included DS reduction ranging from 79% to 83%. Observations showed that fuel oxygen content and viscosity had obvious effects on DS. Higher oxygen content biodiesels produced less DS at high load while lower viscosity biodiesels produced less DS at low load.
Technical Paper

Investigation of Soot Formation in Laminar Diesel Diffusion Flame by Two-Color Laser Induced Incandescence

2008-04-14
2008-01-1064
Soot emissions in the combustion process of diesel engines are greatly harmful to the environment and human health. Consequently, there is large interest and great efforts in decreasing soot emission from diesel engines to meet the increasingly stringent emission standards. The mechanisms of soot formation and oxidation so far have not been well understood. Laser induced incandescence (LII) is particularly suited to measure the instantaneous spatial distribution of the soot volume concentration, which can offer much needed detailed information of soot distribution for better understanding of soot formation and oxidation. In this paper, a two-color laser induced incandescence (2C-LII) technique was implemented for measuring absolute soot volume fraction in a laminar diesel fuel diffusion flame.
Technical Paper

Effects of Fuel Quality on a Euro IV Diesel Engine with SCR After-Treatment

2008-04-14
2008-01-0638
Beijing will implement the 4th stage emission regulations (equivalent to Euro IV) in 2008 ahead of other provinces or cites in China. Beijing Environmental Protection Bureau (EPB) organized petroleum corporations, automobile and engine manufactories as well as research institutes to test the adaptability of the fuels from Chinese refineries to the modern vehicles or engines on the road running conditions in China. In this paper, the effects of diesel fuel quality on combustion and emission of a Euro IV heavy-duty diesel engine as one part of the program were studied to provide technical data to stipulate the feasible diesel fuel standard, which should guarantee modern vehicles or engines to meet the 4th stage regulations. Eight kinds of diesel fuels with different properties, such as cetane number, distillation temperature (T90) and sulfur content, were tested on a Euro IV Cummins heavy-duty diesel engine with urea SCR after-treatment.
Technical Paper

Effects of Gasoline Fuel Properties on Engine Performance

2008-04-14
2008-01-0628
Beijing will implement the national 4th stage emissions standards (equivalent to Euro IV emissions standards) in advance in China from 2008. The objective of this study was to provide some technical support for proposing automotive gasoline fuel standards matching with the emission standards. In this paper, tests were conducted on two engines and one gasoline passenger vehicle meeting Euro III or IV emission standards to study the correlation between gasoline fuel properties and engine performances, including power, fuel consumption and emissions. Test results showed that the effect of octane number on engine power depended on engine technologies. High octane number had a negative effect on fuel consumption and emissions. As olefin content increased, the engine-out THC emissions decreased significantly. The vehicle test results also showed that high olefin content greatly reduced the tailpipe THC emissions.
Technical Paper

Mode Switch of SI-HCCI Combustion on a GDI Engine

2007-04-16
2007-01-0195
Multi-mode combustion is an ideal combustion strategy to utilize HCCI for internal combustion engines. It combines HCCI combustion mode for low-middle load and traditional SI mode for high load and high speed. By changing the cam profiles from normal overlap for SI mode to the negative valve overlap (NVO) for HCCI mode, as well as the adjustment of direct injection strategy, the combustion mode transition between SI and HCCI was realized in one engine cycle. By two-step cam switch, the throttle action is separated from the cam action, which ensures the stabilization of mode transition. For validating the feasibility of the stepped switch, the influence of throttle position on HCCI combustion was carefully studied. Based on the research, the combustion mode switch was realized in one engine cycle; the whole switch process including throttle action was realized in 10 cycles. The entire process was smooth, rapid and reliable without any abnormal combustion such as knocking and misfiring.
Technical Paper

An Ethanol SCR for NOx Purification: Performance Evaluation on Engine Bench and Demonstration on Bus

2007-04-16
2007-01-1240
NOx -SCR over Ag/ Al2O3 catalyst using ethanol (C2H5OH) as a reductant has proven its ability to significantly reduce NOx emission in a simulated engine exhaust gas environment. However the real engine exhaust gas environment is too complicated to be simulated. Therefore, the performance evaluation of the Ag/ Al2O3 catalyst in real exhaust gas environment is necessary. Moreover, the ethanol dosing device and control strategy also need to be validated for the practical use. In this paper, firstly the catalyst performance and its sulfur tolerance was tested on an engine test bench and the effect of the catalyst on PM emission was investigated. Then the aftertreatment system composed of Ag/Al2O3 catalyst + Cu/TiO2 catalyst + Pt/TiO2 catalyst and ethanol dosing control based on open loop control was designed, and the diesel engine emission with the aftertreatment system was tested according to ESC test cycle.
X