Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Study on the image recognition of ammonia ignition process induced by methanol micro-jet

2023-09-29
2023-32-0067
Ammonia is regarded as a possible carbon-free energy source for engines, drawing more and more attention. However, the low burning velocity of ammonia inhibits its application. To improve the ignition energy by ignition chamber (pre-chamber) jet ignition seems to be a good solution. In this study, the jet-controlled compound ignition (JCCI) model was proposed to improve the ammonia premixed combustion, in which the ignition chamber was fueled with methanol, investigated by visualization method in a constant volume chamber. Jet flame image recognition and characteristic parameters determination is significant to the analysis of the jet flame propagation and combustion processes. In this study, jet flame image recognition approaches were investigated and compared. The Approach 1 as jet flame contour extraction method was applied to study the overall jet flame propagation.
Technical Paper

Research on the Characteristics of Enrichment Fuel Injection Process in the Pre-Chamber of a Marine Gas Engine

2015-09-01
2015-01-1961
Fuel injection and fuel-air mixture formation processes have significant influence on the performance of spark ignition gas engines. In order to study the fuel enrichment injection process in the pre-chamber of a marine gas engine, the flow field in the pre-chamber during the gas fuel injection period was investigated by the particle image velocimetry (PIV) method. An organic glass model of pre-chamber was made for optical measurement. The flow fields in the pre-chamber with four different gas injection angles were analyzed, respectively. The measurement results were qualitatively compared to the CFD calculation results as the verification of the calculation. Based on the comparison of the PIV experiment results, an optimal gas fuel injection angle was chosen. Furthermore, 3D CFD calculation models with the baseline and optimal fuel injection angles of a marine spark ignited natural gas engine were generated to calculate the working process.
Technical Paper

A Numerical Investigation of the Vaporization Process of Lubricating Oil Droplets under Gas Engine Conditions

2015-09-01
2015-01-1949
The abnormal combustion resulted by the auto-ignition of lubricating oil is a great challenge to the development of Otto-cycle gas engines. In order to investigate the mechanism of lubricating oil droplet vaporization process, a crucial sub-process of auto-ignition process, a new multi-component vaporization model was constructed for high temperature and pressure, and forced gas flow conditions as encountered in practical gas engines. The vaporization model has been conducted with a multi-diffusion sub-model considering the multi-component diffusivity coefficients in the gas phase. The radiation heat flux caused by ambient gas was taken into account in high temperature conditions, and a real gas equation of state was used for high pressure conditions. A correction for mass vaporization rate was used for forced gas flow conditions. Extensive verifications have been realized, and considerable results have been achieved.
Technical Paper

Researches of Double-Layer Diverging Combustion System (DLDCS) in a DI Diesel Engine

2015-09-01
2015-01-1833
The new DI diesel engine combustion system named Double-Layer Diverging Combustion System (DLDCS) results in a better Brake Specific Fuel Consumption (BSFC) and lower exhaust emissions. The previous results of numerical simulation and bench test of a single cylinder DI diesel engine showed that more homogeneous fuel distribution, better BSFC and lower emission level were obtained by employing this combustion system. In this research, further numerical simulation are employed to seek the best injection advance angle and investigate the influence of different volume fraction and type lines of upper layer with AVL Fire.
Technical Paper

Effect of Spark Timing and Load on Combustion and Emission Characteristics in Jet Controlled Compression Ignition

2015-09-01
2015-01-1793
A novel combustion system called Jet Controlled Compression Ignition (JCCI) is investigated to directly control the combustion phasing of premixed diesel compression ignition. Experiments were conducted on a single-cylinder naturally aspirated diesel engine at 3000r/min without EGR. The experimental results showed a good linear relationship between spark timing in the ignition chamber and CA10 and CA50, which indicated the ability for direct combustion phasing control in premixed diesel combustion. The NOx and soot emissions gradually changed with the spark advance angle. Then, load sweep experiments were performed with fixed spark timing. The results showed the onset of combustion was almost unchanged over a wide load range. Additionally, NOx emission was greatly reduced at all test loads compared with the original engine. Soot emission was reduced at a comparatively high load while similar with that of the original engine at low loads.
Technical Paper

A Study of Combustion Phasing Control and Emissions in Jet Controlled Compression Ignition Engines

2014-10-13
2014-01-2671
To directly control the premixed combustion phasing, a novel method called Jet Controlled Compression Ignition (JCCI) is investigated. Experiments were conducted on a single cylinder natural aspirated diesel engine at 3000 r/min without EGR. Numerical model was validated by pressure and heat release rate curves at a fixed spark timing. The simulation results showed that the reacting active radical species with high temperature issued from ignition chamber played an important role on the onset of combustion in JCCI system. The combustion of diesel pre-mixtures was initiated rapidly by the combustion products issued from ignition chamber. Consequently, the experiments of spark timing sweep were conducted to verify the above deduction. The results showed a good linear relationship between spark timing and CA10 and CA50, which validated the ability for direct combustion phasing control in diesel premixed combustion.
Journal Article

Fuel Spray Evaporation and Mixture Formation Processes of Ethanol/Gasoline Blend Injected by Hole-Type Nozzle for DISI Engine

2012-10-23
2012-32-0018
Ethanol is regarded as the promising alternative fuel for gasoline to meet the strict low emission standard for spark ignition engines. In this study, the spray mixture formation process for different ethanol blended fuels, including E0 (gasoline), E85 (85% volume of ethanol and 15% volume of gasoline) and E100 (ethanol), has been evaluated using hole-type nozzle by the measurement of Laser Absorption Scattering (LAS) technique in a constant volume vessel. Based on the principle of LAS, the quantitative vapor and liquid phase distribution from different ethanol blended fuel can be obtained by the light extinction regime. Aiming to analyze the effect of mixture formation and evaporation for different components of blended fuel or pure gasoline and ethanol, the vapor distribution of gasoline was determined by using p-xylene, which had similar physical properties to gasoline, especially higher boiling temperature components, and higher absorption for ultraviolet.
Journal Article

Experimental Study on Mixture Formation and Ignition Processes of Spray Injected by Hole-Type Nozzle for DISI Engine

2011-11-08
2011-32-0523
The purpose of this study is to investigate the spray characteristics and ignition stability of gasoline sprays injected from a hole-type nozzle. Using a single-hole VCO (Valve-Covered-Orifice) nozzle, the spray characteristics were studied with LAS (Laser Absorption Scattering) technique, and then flame propagation and ignition stability were investigated inside a high temperature high pressure constant volume vessel using a high speed video camera. The spatial ignition stability of the spray at different locations was tested by adjusting the position of the electrodes. By adjusting the ignition timings, the stable ignition windows for 3 determined locations where the ignition stability was high at a fixed ignition timing were studied. The flame propagation process was examined using high speed shadowgraph method. Experimental results show that when the ignition points are located on the spray axis, the ignition probability is low.
Technical Paper

Spray and Evaporation Characteristics of Multi-Hole Injector for DISI Engines - Effect of Diverging Angle Between Neighboring Holes

2009-04-20
2009-01-1500
Experimental and computational studies were carried out to characterize the spray development and evaporation processes of multi-hole injector for direct injection spark ignition (DISI) engines. The main injector parameter to be investigated in this study is a diverging angle between neighboring two holes. In the experimental study, the influence of the diverging angle on evaporation process of fuel spray from two-hole injector was investigated using Laser Absorption Scattering (LAS) measurement. Smaller diverging angle causes larger spray tip penetration because the momentum of the spray from one hole emphasizes another, when two spray merge to one. Moreover, spray tip penetration decreases at certain diverging angle due to the negative pressure region between two sprays. Mechanisms behind the above spray behaviors were discussed using the detailed information on the spray and ambient gas flow fields obtained by the three dimensional computational fluid dynamics (CFD).
X