Refine Your Search

Search Results

Author:
Viewing 1 to 20 of 20
Technical Paper

The Feasibility of an Alumina-Based Lean NOx Trap (LNT) for Diesel and HCCI Applications

2008-04-14
2008-01-0451
An alumina-based LNT is being developed through laboratory studies, for diesel vehicle applications. This LNT provides high NOx conversion efficiency at low temperature (150 to 350°C, especially below 200°C), which is very important for the exhaust-gas after-treatment of diesel passenger vehicles. Addition of 2 to 4 wt% of alkaline-earth metal oxide or other metal oxides to the alumina LNT formulation improves NOx reduction activity at the high end of its active temperature window. More significantly, the alumina-based LNT can undergo the de-SOx process (the process of removing sulfur from the catalytic surfaces) very efficiently: within 1 minute at the relatively low temperature of 500 to 650°C under slightly rich conditions (λ = 0.98 to 0.987). Such a mild de-SOx process imposes minimal thermal exposure, causing almost no thermal damage to the LNT, and helps minimize the associated fuel penalty.
Technical Paper

On HCCI Engine Knock

2007-07-23
2007-01-1858
Knock in a HCCI engine was examined by comparing subjective evaluation, recorded sound radiation from the engine, and cylinder pressure. Because HCCI combustion involved simultaneous heat release in a spatially large region, substantial oscillations were often found in the pressure signal. The time development of the audible signal within a knock cycle was different from that of the pressure trace. Thus the audible signal was not the attenuated transmission of the cylinder pressure oscillation but the sound radiation from the engine structure vibration excited by the initial few cycles of pressure oscillation. A practical knock limited maximum load point for the specific 2.3 L I4 engine under test (and arguably for engines of similar size and geometry) was defined at when the maximum rate of cycle-averaged pressure rise reached 5 MPa/ms.
Technical Paper

Effect of Air Temperature and Humidity on Gasoline HCCI Operating in the Negative-Valve-Overlap Mode

2007-04-16
2007-01-0221
The impact of intake air temperature and humidity on gasoline HCCI engine operation was assessed. The 2.3 L I4 production engine modified for single cylinder operation was controlled by using variable cam phasing on both the intake and exhaust valve in the negative-valve-overlap mode. Exhaust cam phasing was mainly used to control load, and intake cam phasing was mainly used to control combustion phasing. At stoichiometric condition, higher intake air temperature advanced combustion phasing and promoted knock, resulting in a 19% reduction of the Net Indicated Mean Effective Pressure (NIMEP) at the high load limit at 1500 rpm when intake temperature was changed from −10 to 100° C. Higher ambient humidity delayed combustion phasing. For stoichiometric operation, this delay allowed a small extension (a few tenths of a bar in NIMEP) in the high load limit when the moisture concentration was changed from 3 to 30 g/m3 (corresponding to 10-100% relative humidity at 28° C).
Technical Paper

Robustness and Performance Near the Boundary of HCCI Operating Regime of a Single-Cylinder OKP Engine

2006-04-03
2006-01-1082
A single-cylinder OKP (optimized kinetic process) engine, which uses homogeneous-charge compression-ignition (HCCI) technology, was tested, following a previous study, to evaluate the combustion system robustness and to improve the engine performance near the boundaries of the HCCI operating regime at light loads, high loads and high speed. To evaluate the robustness of HCCI combustion control, gasoline fuels with different RON were used, and the engine was tested at different coolant temperatures. It was demonstrated that the proposed HCCI control approaches could control the OKP engine system to operate robustly using different fuels and at different coolant temperatures. The effects of fuel injection timing and residual gas fraction on HCCI combustion and emissions, especially CO emissions and combustion efficiency, were tested at light loads; and the mechanisms were analyzed.
Technical Paper

Detailed Hydrocarbon Species and Particulate Emissions from a HCCI Engine as a Function of Air-Fuel Ratio

2005-10-24
2005-01-3749
Concentrations of individual species in the engine-out exhaust gas from a gasoline-fueled (101.5 or 91.5 RON), direct-injection, compression-ignition (HCCI) engine have been measured by gas chromatography over the A/F range 50 to 230 for both stratified and nearly homogeneous fuel-air mixtures. The species identified include hydrocarbons, oxygenated organic species, CO, and CO2. A single-cylinder HCCI engine (CR = 15.5) with heated intake charge was used. Measurements of the mass and size distribution of particulate emissions were also performed. The 101.5 RON fuel consisted primarily of five species, simplifying interpretation of the exhaust species data: iso-pentane (24%), iso-octane (22%), toluene (17%), xylenes (10%), and trimethylbenzenes (9%).
Technical Paper

Development of a Gasoline Engine System Using HCCI Technology - The Concept and the Test Results

2002-10-21
2002-01-2832
Homogeneous-charge compression-ignition (HCCI) technology has high potential to significantly reduce fuel consumption and NOx emissions over PFI engines. Control of the HCCI combustion process over the full range of conventional PFI operating conditions, however, has been a challenge. This study describes an HCCI-SI dual-mode engine system proposal based on new approaches to optimize the engine performance. A 0.658L single-cylinder engine was built and tested using these concepts. The engine was operated in HCCI mode from idle to 5.5 bar NMEP and up to 4750 rpm. NSFC in HCCI mode was about 175 g/kWh over most of the operating range except at very low load or near the high load boundary. At a part load of 1500 rpm and an equivalent BMEP of 2.62 bar, net indicated fuel efficiency was 50% higher than PFI engines and 30% higher than a prototype SC-DISI engine.
Technical Paper

Some Concepts of DISI Engine for High Fuel Efficiency and Low Emissions

2002-10-21
2002-01-2747
Stratified-charge DISI engines have been launched in the market by Mitsubishi, Toyota, and Nissan. This paper discusses the current production stratified-charge DISI systems and some alternative systems, including the system using air-forced fuel injection and a proposed system that uses a swirl flow in the piston bowl with a special shape to separate the fuel-rich mixture layer from the wall surface. New DISI concepts are proposed to overcome some drawbacks of current bowl-in-piston type stratified-charge DISI systems. Charge stratification can be realized by using a soft spray with proper spray penetration, droplet size, and cone angle, as shown by CFD simulation results. The drawbacks of fuel wall wetting, soot limited load with charge stratification, large surface to volume ratio, etc., of the bowl-in-piston type system can be minimized.
Technical Paper

Study of a Stratified-Charge DISI Engine with an Air-Forced Fuel Injection System

2000-06-19
2000-01-2901
A small-bore 4-stroke single-cylinder stratified-charge DISI engine using an air-forced fuel injection system has been designed and tested under various operating conditions. At light loads, fuel consumption was improved by 16∼19% during lean, stratified-charge operation at an air-fuel ratio of 37. NOx emissions, however, were tripled. Using EGR during lean, stratified-charge operation significantly reduced NOx emissions while fuel consumption was as low as the best case without EGR. It was also found that combustion and emissions near the lean limit were a strong function of the combination of injection and spark timings, which affect the mixing process. Injection pressure, air injection duration, and time delay between fuel and air injections also played a role. Generating in-cylinder air swirl motion slightly improved fuel economy.
Technical Paper

Sooting Tendencies in an Air-Forced Direct Injection Spark-Ignition (DISI) Engine

2000-03-06
2000-01-0255
Particulate emissions are reported for a 0.31 L single cylinder engine fitted with an air forced direct injection system. Trends in number, size, and mass of engine out particle emissions are examined as a function of injection timing, spark timing, and EGR. Injection timing determines to a large degree the nature of the combustion, with early injection leading to homogeneous like combustion and late injection producing stratified charge combustion. As fuel injection is retarded, at a fixed lean air to fuel ratio, PM emissions decline to a minimum at an injection time well within the compression stroke, after which they rapidly increase. In the heavily stratified regime, the PM increase can be attributed to a growing number of rich zones that occur in the progressively more inhomogeneous fuel mixture. At fixed injection timing, advancing the spark causes a general increase in particle emissions.
Technical Paper

Characteristics of Direct Injection Gasoline Spray Wall Impingement at Elevated Temperature Conditions

1999-10-25
1999-01-3662
The direct injection gasoline spray-wall interaction was characterized inside a heated pressurized chamber using various visualization techniques, including high-speed laser-sheet macroscopic and microscopic movies up to 25,000 frames per second, shadowgraph, and doublespark particle image velocimetry. Two hollow cone high-pressure swirl injectors having different cone angles were used to inject gasoline onto a heated plate at two different impingement angles. Based on the visualization results, the overall transient spray impingement structure, fuel film formation, and preliminary droplet size and velocity were analyzed. The results show that upward spray vortex inside the spray is more obvious at elevated temperature condition, particularly for the wide-cone-angle injector, due to the vaporization of small droplets and decreased air density. Film build-up on the surface is clearly observed at both ambient and elevated temperature, especially for narrow cone spray.
Technical Paper

In-Cylinder Mixing Rate Measurements and CFD Analyses

1999-03-01
1999-01-1110
Gas-phase in-cylinder mixing was examined by two different methods. The first method for observing mixing involved planar Mie scattering measurements of the instantaneous number density of silicon oil droplets which were introduced to the in-cylinder flow. The local value of the number density was assumed to be representative of the local gas concentration. Because the objective was to observe the rate in which gas concentration gradients change, to provide gradients in number density, droplets were admitted into the engine through only one of the two intake ports. Air only flowed through the other port. Three different techniques were used in analyzing the droplet images to determine the spatially dependent particle number density. Direct counting, a filtering technique, and autocorrelation were used and compared. Further, numerical experiments were performed with the autocorrelation method to check its effectiveness for determination of particle number density.
Technical Paper

Fuel Injection Strategies to Increase Full-Load Torque Output of a Direct-Injection SI Engine

1998-02-23
980495
Fuel-air mixing in a direct-injection SI engine was studied to further improve full-load torque output. The fuel-injection location of DI vs. PFI results in different heat sources for fuel evaporation, hence a DI engine has been found to exhibit higher volumetric efficiency and lower knocking tendency, resulting in higher full-load torque output [1]. The ability to change injection timing of the DI engine affects heat transfer and mixture temperature, hence later injection results in lower knocking tendency. Both the higher volumetric efficiency and the lower knocking tendency can improve engine torque output. Improving volumetric efficiency requires that the fuel is injected during the intake stroke. Reducing knocking tendency, in contrast, requires that the fuel is injected late during the compression stroke. Thus, a strategy of split injection was proposed to compromise the two competing requirements and further increase direct-injection SI engine torque output.
Technical Paper

Effects of Injection Timing on Air-Fuel Mixing in a Direct-Injection Spark-Ignition Engine

1997-02-24
970625
Multidimensional modeling is used to study air-fuel mixing in a direct-injection spark-ignition engine. Emphasis is placed on the effects of the start of fuel injection on gas/spray interactions, wall wetting, fuel vaporization rate and air-fuel ratio distributions in this paper. It was found that the in-cylinder gas/spray interactions vary with fuel injection timing which directly impacts spray characteristics such as tip penetration and spray/wall impingement and air-fuel mixing. It was also found that, compared with a non-spray case, the mixture temperature at the end of the compression stroke decreases substantially in spray cases due to in-cylinder fuel vaporization. The computed trapped-mass and total heat-gain from the cylinder walls during the induction and compression processes were also shown to be increased in spray cases.
Technical Paper

Coolant Pump Throttling - A Simple Method to Improve the Control Over SI Engine Cooling System

1996-08-01
961813
Pump throttling at light engine loads can reduce the heat-transfer coefficients in both the water jacket and the radiator, reducing HC emissions and friction/heat-transfer losses. Pump throttling can also accelerates engine warm-up. Pump driving power under pump throttling is predicted using measured flow parameters of a production-engine cooling system. The lower pump driving power due to pump throttling results in a 0.5% decrease in predicted BSFC. Engine BSFC can decrease by more than 0.5% due to reduced friction and heat-transfer losses as a result of the increased engine temperature.
Technical Paper

Modeling the Effects of Intake Flow Structures on Fuel/Air Mixing in a Direct-injected Spark-Ignition Engine

1996-05-01
961192
Multidimensional computations were carried out to simulate the in-cylinder fuel/air mixing process of a direct-injection spark-ignition engine using a modified version of the KIVA-3 code. A hollow cone spray was modeled using a Lagrangian stochastic approach with an empirical initial atomization treatment which is based on experimental data. Improved Spalding-type evaporation and drag models were used to calculate drop vaporization and drop dynamic drag. Spray/wall impingement hydrodynamics was accounted for by using a phenomenological model. Intake flows were computed using a simple approach in which a prescribed velocity profile is specified at the two intake valve openings. This allowed three intake flow patterns, namely, swirl, tumble and non-tumble, to be considered. It was shown that fuel vaporization was completed at the end of compression stroke with early injection timing under the chosen engine operating conditions.
Technical Paper

Scavenging of a Firing Two-Stroke Spark-Ignition Engine

1994-03-01
940393
Current demands for high fuel efficiency and low emissions in automotive powerplants have drawn attention to the two-stroke engine configuration. The present study measured trapping and scavenging efficiencies of a firing two-stroke spark-ignition engine by in-cylinder gas composition analysis. Intermediate results of the procedure included the trapped air-fuel ratio and residual exhaust gas fraction. Samples, acquired with a fast-acting electromagnetic valve installed in the cylinder head, were taken of the unburned mixture without fuel injection and of the burned gases prior to exhaust port opening, at engine speeds of 1000 to 3000 rpm and at 10 to 100% of full load. A semi-empirical, zero-dimensional scavenging model was developed based on modification of the non-isothermal, perfect-mixing model. Comparison to the experimental data shows good agreement.
Technical Paper

Relationship Between Monochromatic Gas Radiation Characteristics and SI Engine Combustion Parameters

1993-03-01
930216
Relationships between radiant emissions, as measured by an in-cylinder optical sensor, and spark-ignition engine combustion parameters are presented for possible use in engine combustion diagnostics and future engine control strategies. A monochromatic gas radiation model, developed in a previous study, was used to derive a series of relationships between the measured radiant emission characteristics and several spark-ignition engine combustion parameters, such as the amplitude and phasing of the peak heat-release rate, combustion duration, IMEP, NOx emission, pressure, trapped mass and exhaust-gas temperature. In addition, many engine parameters of interest can be estimated indirectly from the radiation signal using empirical models. Correlations of air-fuel ratio and exhaust emissions are presented which contain a combination of radiant emission parameters and known base-engine operating parameters, such as intake manifold pressure, etc.
Technical Paper

Effects of Port-Injection Timing and Fuel Droplet Size on Total and Speciated Exhaust Hydrocarbon Emissions

1993-03-01
930711
The requirement of reducing HC emissions during cold start and improving transient performance has prompted a study of the fuel injection process. Port-fuel-injection with the Intake-valve open using small droplets is a potentially feasible option to achieve the goals. To gain a better understanding of the injection process, the effects of droplet size, injection timing, and coolant temperature on the total and speciated HC emissions were tested In a Single-cylinder engine. It was found that droplet size plays an important role in the total HC emission increase during open-valve injection, especially with cold operation. Large droplets (300 μm SMD) produced a substantial HC increase while small droplets (14 μm SMD) produced no observable increase. Increase In the total HC emissions was always accompanied by an increase in the heavy fuel components in the exhaust gases.
Technical Paper

Predictions of the Effects of High Temperature Walls, Combustion, and Knock on Heat Transfer in Engine-Type Flows

1990-02-01
900690
Consideration of the heat transfer effects in low-heat-rejection engines has prompted further study into engine heat transfer phenomena. In a previous study, an approximate solution of the one-dimensional energy equation was acquired for transient, compressible, low-Mach number, turbulent boundary layers typical of those found in engines. The current study shows that an approximate solution of the one-dimensional energy equation with arbitrarily-distributed heat release can also be obtained. Using this model, the effects of high temperature walls, combustion, and autoignition on heat transfer can be studied. In the case of high temperature walls, the model predicts the expected behavior unless the quench distance gets very small. For combustion, the reaction must occur close to the wall for a direct effect on the heat transfer to be observed. With autoignition, instantaneous values of heat flux reach levels as high as 6 MW/m2, and oscillate in phase with the pressure wave.
Technical Paper

Heat Transfer Predictions and Experiments in a Motored Engine

1988-09-01
881314
In the first part of this study, a one-dimensional code was used to compare predictions from six different two-equation turbulence models. It is shown that the application of the traditional k-ε models to the viscous-dominated region of the boundary layer can produce errors in both the calculated heat flux and surface friction. A low-Reynolds-number model does not appear to predict similar non-physical effects. A new one-dimensional model, which includes the effect of compression, has been formulated by multiparameter fit to the numerical solution of the energy equation. This model can be used in place of the law-of-the-wall to calculate the surface heat flux. The experiments were performed in a specially-instrumented engine, allowing optical access to the clearance volume. Measurements of heat flux, swirl velocities, and momentum boundary layer thickness were made for different engine speeds.
X