Refine Your Search

Search Results

Viewing 1 to 18 of 18
Technical Paper

Modeling of Turbulent Scalar Transport in Expanding Spherical Flames

2005-05-11
2005-01-2109
In the first part of the paper, a generalization of the turbulent diffusivity concept is considered and a generalized diffusion coefficient is introduced to account for the development of turbulent diffusivity, pressure-driven countergradient transport, and effects of chemical reactions on turbulent scalar flux. The behavior of the generalized diffusivity is numerically studied in the 1-D statistically planar case and the contributions of the aforementioned processes to the diffusivity are assessed. In the second part of the paper, the generalized diffusivity is incorporated into the Flame Speed Closure (FSC) model of premixed turbulent combustion and the extended FSC model is applied to simulate recent experiments performed using the Leeds fan-stirred bomb. The extended FSC model well predicts the speed, thickness and structure of statistically spherical, premixed, turbulent flames that expand in the bomb after spark ignition.
Technical Paper

A Numerical Study of Weakly Turbulent Premixed Combustion with Flame Speed Closure Model

2003-05-19
2003-01-1839
Over the past years, the so-called Flame Speed Closure (FSC) model was shown to be a very promising tool for multi-dimensional simulations of premixed turbulent combustion in internal combustion and gas turbine engines. The laboratory tests and industrial applications of the model have been mainly limited to moderately turbulent flames. In the paper, three alternative versions of the FSC model, which yield different results at weak turbulence but similar results at moderate one, are discussed and numerically tested against recent experimental data reported by the Leeds [27,34] and Rouen [28] groups for expanding, statistically spherical, premixed, weakly turbulent flames. The computed and measured data on the mean combustion progress variable profiles, mean flame brush thickness development, and observed flame speeds are compared in order to assess and rank the submodels discussed.
Technical Paper

Simulations of Fuel/Air Mixing, Combustion, and Pollutant Formation in a Direct Injection Gasoline Engine

2002-03-04
2002-01-0835
Simulations of a Direct Injection Spark Ignition (DISI) engine have been performed for both early injection with homogeneous charge combustion and for late injection with stratified charge combustion. The purpose has been to study flow characteristics, fuel/air mixing, combustion, and NOx and soot formation. Focus is put on the combustion modeling. Two different full load cases with early injection are simulated, 2000 rpm and 6000 rpm. One load point with late injection is simulated, 2000 rpm and 2.8 bar net MEP. Three different injection timings are simulated at the low load point: 77, 82, and 87 CAD bTDC. The spray simulations are tuned to match measured spray penetrations and droplet size distributions at both atmospheric and elevated pressure. Boundary conditions for the engine simulations are taken from 1-D gas exchange simulations that are tuned to match engine tests.
Technical Paper

Numerical Investigation of Reaction Zone Structure and Flame Liftoff of DI Diesel Sprays with Complex Chemistry

2002-03-04
2002-01-1114
A complex chemistry model of reduced size (65 species and 268 reaction steps) derived on the basis of n-heptane auto-ignition kinetics, low hydrocarbon oxidation chemistry, poly-aromatic hydrocarbon (PAH) and NOx formation kinetics together with a phenomenological soot model have been integrated with the KIVA code for multidimensional diesel simulations. A partially stirred reactor model is used to handle the turbulence-chemistry interaction. The results obtained from numerical simulations for a direct-injection (DI) diesel spray, which is injected into a constant-volume combustion vessel at engine-like conditions, show that the approach is able to reproduce the transient diesel auto-ignition and combustion processes as observed in many optical imaging studies. The simulated results indicate that the auto-ignition of DI diesel spray occurs at a lean site close to the mean stoichiometric line for the cases tested.
Technical Paper

A Method for Evaluating Fully Developed Turbulent Flame Speed

2001-09-23
2001-24-0046
Fan-stirred bombs, which are widely used worldwide, offer an unique opportunity to investigate basic features of S.I. engine combustion under well-defined experimental conditions. Extensive data bases on turbulent flame speeds have been generated by various groups utilizing such bombs. However, the use of these data bases is impeded by the fact that the measured flame speeds characterize an inherently transient process, i.e.. the speeds are time-dependent even if the pressure and the unburned gas temperature in the bomb are very close to the initial values; whereas the combustion theory and various models deal commonly with an asymptotically fully developed turbulent flame speed. The goal of this work is to test a method for evaluating the latter quantity by processing the published data on the flame radius growth, measured in expanding, statistically spherical, premixed flames.
Technical Paper

The Structure of Cavitation and its Effect on the Spray Pattern in a Single-Hole Diesel Nozzle

2001-05-07
2001-01-2008
The structure and evolution of cavitation in a transparent scaled-up diesel nozzle having a hole perpendicular to the nozzle axis has been investigated using high-speed motion pictures, flash photography and stroboscopic visualization. Observations revealed that, at the inception stage, cavitation bubbles are dominantly seen in the vortices at the boundary layer shear flow and outside the separation zone. Cavitation bubbles grow intensively in the shear layer and develop into cloud-like coherent structures when viewed from the side of the nozzle. Shedding of the coherent cloud cavitation was observed. When the flow was increased further the cloud like cavitation bubbles developed into a large-scale coherent structure extending downstream of the hole. Under this condition the cavitation starts as a mainly glassy sheet at the entrance of the hole. Until this stage the spray appeared to be symmetric.
Technical Paper

Transient Measurements of Discharge Coefficients of Diesel Nozzles

2000-10-16
2000-01-2788
The discharge coefficient is an important functional parameter of an injector characterising the nozzle flow, in terms of cavitation and hydraulic flip, which subsequently play a crucial role in the spray formation and development. Thus it is important to have the possibility of measuring instantaneously the value of the discharge coefficient. The method proposed is based on the measurement of force developed during the impingement of the fuel jet on a normal target. In this study the method was verified experimentally and also the variation of a diesel nozzle discharge coefficient over the entire injection time was studied. The impingement results were in good agreement, when compared with the results from mass flow measurements both at high and low injection pressures. Strong variations of the discharge coefficient during the injector needle opening and closing periods were seen.
Technical Paper

Self-Ignition and Early Combustion Process of n-Heptane Sprays Under Diluted Air Conditions: Numerical Studies Based on Detailed Chemistry

2000-10-16
2000-01-2931
This paper reports the numerical studies of self-ignition and early combustion process of n-heptane sprays under various diluted air conditions. The numerical simulations employ a detailed chemistry approach, coupled directly with the computational fluid dynamics (CFD). A “subgrid” Partially Stirred Reactor (PaSR) model has been developed to account for the turbulence-chemistry-interaction. This model has been implemented into the KIVA3V CFD code. A detailed chemical mechanism of reduced size (65 species and 273 elementary reactions) for the n-heptane fuel has been derived and applied to the simulations of spray combustion. The studies focus on sprays injected into a high-pressure constant-volume chamber. Firstly, the validation of the current numerical model has been carried out for the case in which the injection and initial conditions are similar to those used in the “classical” Aachen experiments (50bar and 800K).
Technical Paper

Investigation of Spark Position Effects in a Small Pre-chamber on Ignition and Early Flame Propagation

2000-10-16
2000-01-2839
Lean gas engines have a potential for a significant reduction in both fuel consumption and emission levels. The use of a small pre-chamber with controlled stoichiometric or rich mixture composition is an effective way to deal with ignition problems in such engines. A constant volume vessel equipped with a device for generation of turbulence of known quantities is used to study the operation of a cylindrical pre-chamber of 1% of the main chamber volume. Pressure was measured in the main chamber and Schlieren images of the flame initiation and propagation in the main chamber were recorded for all set-ups. The investigation of the pre-chamber is focused on the position of the spark within the pre-chamber. Spark locations close to the orifice and close to the opposite wall as well as in the middle of the pre-chamber were tested and flame evolution and pressure history were studied.
Technical Paper

Modeling of Pressure and Non-Stationary Effects in Spark Ignition Engine Combustion: A Comparison of Different Approaches

2000-06-19
2000-01-2034
Published experimental data obtained in well-defined simple cases are discussed in order to qualitatively test various models of premixed turbulent combustion, utilized in multi-dimensional numerical simulations of SI engines. An analysis of such data indicates that there exist several unresolved issues important for flame propagation in SI engines. Two of them, pressure dependence of turbulent flame speed St and turbulent flame development, are discussed in the paper. First, existing experimental data indicate an increase in St by pressure despite the marked decrease in the laminar burning velocity SL by P. Although this well established trend appears to be of substantial importance for SI engine applications, many combustion models utilize SL as the sole mixture characteristic and, hence, predict similar dependencies both of St and of SL on P, contrary to the aforementioned experimental results.
Technical Paper

Injection Orifice Shape: Effects on Spray Characteristics and Heat-Release Rate in a Large-Size Single-Cylinder Diesel Engine

1999-10-25
1999-01-3490
A series of experimental studies of diesel spray and combustion characteristics was carried out using circular, elliptic and step orifices. The experiment was performed on a 3-litre single-cylinder engine with optical access. In the engine tests, an elliptic-orifice nozzle with an aspect ratio of approximately 2:1, and a step-orifice nozzle were compared with circular-orifice nozzles. All orifices had sharp-edged inlets. The nozzles were tested at injection pressures extending from 300 to 1300 bar. The nozzles were evaluated in respect of initial spray tip velocity, penetration, spray cone angle, spray width, intermittency and heat-release. Substantial differences were observed in the spray characteristics: At an injection pressure of 300 bar, the spray width increased twice as fast in the minor axis plane of the elliptic orifice and step orifice than the circular orifices.
Technical Paper

A New Knock Form - an Experimental Study

1998-10-19
982589
Traditionally, the knocking cylinder pressure trace has been characterized by an instant jump followed by a steadily decaying fluctuation. We found many cases where an increase in fluctuation amplitude in time could be observed. Thus, a coherent energy release triggered by the pressure wave typical for the initiation of knock was discovered. Possible mechanisms for the explanation of this phenomenon are discussed: First, the combined pressure and temperature effects on the flame propagation rate in the end-gas, second, a mechanism based on turbulence augmentation by compression. Third, a mechanism of acoustic or shock wave induced flame instability and fourth, a crevice based mechanism. It is shown that only the crevice mechanism is feasible under engine conditions. It is postulated that the very frequent “weak knock” is due to this phenomenon. Experimental evidence is presented for the existence of this new knock mechanism.
Technical Paper

Randomness of Flame Kernel Development in Turbulent Gas Mixture

1998-10-19
982617
An expanding cylindrical laminar flame kernel affected by random external strain rates and diffusivity is numerically simulated in order to gain insight into the influence of small-scale turbulence on the combustion variability in engines. In the simulations, the kernel is strained, as a whole, by external velocity gradients randomly generated with either Gaussian or log-normal probability density functions. The influence of small-scale turbulent heat and mass transfer is modeled by turbulent diffusivity, the randomness of which is controlled by the fluctuations in the viscous dissipation averaged over the kernel volume. The computed results show that small-scale phenomena can substantially affect the quenching characteristics of a small flame kernel and the kernel growth history rj(t); the scatter of the computed curves of rf(t) being mainly controlled by the scatter of the duration of the initial stage of kernel development.
Technical Paper

Injection Orifice Shape: Effects on Combustion and Emission Formation in Diesel Engines

1997-10-01
972964
A series of experimental studies of diesel spray combustion was carried out using non-circular and back-step orifices. The experiments were performed in a single-cylinder engine and in a constant volume combustion chamber. In the engine tests, elliptic orifices with an aspect ratio of approximately 2:1 were compared with circular orifices. The elliptic orifices had sharp inlets and the circular orifices had rounded inlets. Elliptic orifices aligned with either the minor axis or the major axis in the direction of the nozzle tip were tested. The orifice shapes had minor effects on the heat release, ignition delay, and emissions of smoke, CO and HC. However, substantial differences were observed for emissions of NOx: for the vertical elliptic orifices, emissions up to 37.6 percent lower than with circular orifices were observed. In the combustion bomb tests, rectangular and back-step orifices were compared with circular orifices, all with sharp inlets.
Technical Paper

A Simple Model of Unsteady Turbulent Flame Propagation

1997-10-01
972993
A model of premixed turbulent combustion is modified for multi-dimensional computations of SI engines. This approach is based on the use of turbulent flame speed in order to suggest a closed balance equation for the mean combustion progress variable. The model includes a single unknown input parameter to be tuned. This model is tested against two sets of experimental data obtained by Bradley et al [17, 18 and 19] and Karpov and Severin [15] in fan-stirred bombs. The model quantitatively predicts the development of the turbulent flame speed, the effects of the initial pressure, temperature, and mixture composition on the turbulent flame speed, and the effects of r.m.s. turbulent velocity and burning mixture composition on the rate of the pressure rise. These results were computed with the same value of the aforementioned unknown input parameter of the model.
Technical Paper

Testing and Evaluation of Ignition Improvers for Ethanol in a DI Diesel Engine

1995-10-01
952512
The ignition delay of ethanol with different nitrate and polyethylene glycol based ignition improvers was investigated in a single-cylinder DI Diesel engine. The nitrate-based improvers provided a shorter ignition delay than the polyethylene glycol improvers, but the results indicate that the efficiency of the polyethylene glycol improvers increases with the length of the molecular chains. Comparison with reference fuels gives a cetane number of approximately 44 for ethanol with 4% of the best nitrate-based improver versus 40 for ethanol with 7% polyethylene glycol improver. It is shown, that the random ignition delay for all the fuels has a normal distribution, and that the reference fuel of every measurement series has a constant expected ignition delay. Ignition delay measurements in a constant-volume combustion vessel failed to produce the same trends as in the engine for the ethanol fuels.
Technical Paper

Oxidation of Hydrocarbons Released from Piston Crevices of S.I. Engines

1995-10-01
952539
This work presents a numerical method for predictions of HC oxidation in the cold turbulent wall jet emerging from the piston top land crevice in an S.I. engine, using a complex chemical reaction model. The method has been applied to an engine model geometry with the aim to predict the HC oxidation rate under engine - relevant conditions. According to the simulation a large amount of HC survives oxidation due to the long ignition delay of the wall jet emitted from the crevice. This ignition delay, in turn depends mainly on chemical composition and temperature of the gas mixture in the crevice and also on the temperature distribution in the cylinder boundary layer.
Technical Paper

Fuel Effects on Energy Release and Knock Parameters in a SI Engine

1995-10-01
952404
Model fuels composed of isooctane, n-heptane, toluene, ethanol and metyl tertiary butyl ether (MTBE) were tested in a modern high speed engine with electronically controlled injection and closed loop, λ=1 control system. The fuel compositions were chosen to represent a spectrum of straight run, catalytically cracked and reformulated gasolines. All fuels were blended in such a way that they had the same research octane number (RON) of 95 as determined by testing in a CFR engine according to the standard ASTM procedure D-2699. 5, 10, 50 and 90 percent energy release and maximum pressure crank angles and their variations, as well as knock probabilities, intensities, locations and characteristics, were determined for all the fuels at two speeds, 25 and 50 rps, at full loads. The fuel composition has a weak effect on the energy release parameters and their variations, but a strong effect on knock.
X