Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

A Semi-Empirical Approach for Modeling Greenhouse Surface Wind Noise

1999-05-19
1999-01-1811
A CAE procedure for modeling the aerodynamic excitation of greenhouse surface vibration and its reradiation as noise is described. The procedure begins with a description of the steady flow over the surfaces. This is used as a basis for estimating the spatially varying unsteady pressure loading. The approach is semi-empirical, utilizing normalized pressure data collected through wind tunnel testing of production vehicles. The unsteady pressures are utilized within a normal mode analysis to predict vibration of the greenhouse panels. Interior noise associated with the panel vibration is estimated from a statistical energy analysis model. We show that contributions of multiple surfaces can be significant.
Technical Paper

Experimental Evaluation of Wind Noise Sources: A Case Study

1999-05-17
1999-01-1812
Several of the authors have recently developed procedures to efficiently evaluate experimentally the relative contributions of various wind noise paths and sources. These procedures are described and, as a case study, results are provided for the noise in the interior of a production automobile subjected to wind tunnel airflow. The present measurements and analysis indicate that for the tested vehicle significant contributions to interior noise are provided by underbody and wheel well flows, radiation from the roof and seal aspiration. A significant tone associated with vortex shedding from the radio antenna was also noted.
Technical Paper

Experimental Assessment of Wind Noise Contributors to Interior Noise

1997-05-20
971922
Wind noise reaches the interior of a vehicle through a variety of mechanisms including: aerodynamic excitation of vibration and reradiation from the greenhouse surfaces; acoustic transmission through door seals including gaps and glass edge leaks, and due to airborne transmission of noise generated by wind interaction with body panels. This paper presents experimental results that quantify contributions to interior noise from individual greenhouse surfaces and from airborne sources on the underbody. The measurements were carried out on a production vehicle in a wind tunnel. Greenhouse surfaces, in addition to the driver window are important contributors to interior noise along with airborne transmission of noise generated due to the flow over and through the vehicle underbody.
Technical Paper

Vehicle Flow Measurement and CFD Analysis for Wind Noise Assessment

1997-02-24
970403
A time cost effective methodology has been developed for the prediction of the A-pillar vortex formation and the side and the rear window flow separation for the purpose of wind noise assessment. This methodology combines a simplified Computational Fluid Dynamics (CFD) model and wind tunnel test data by CFD post-processing tools. The solution of the simplified CFD model provides background data for the whole flow field, but it lacks detail features such as mirror, sealing groove and glass in-set, which are locally important but difficult to mesh and require a very fine mesh resolution. The wind tunnel test data was taken in the specific areas of interest at the A-pillar, side window, rear window area, and roof from a real automotive. Then the wind tunnel test data was superposed upon the simplified CFD model to correct the numerical error due to geometry simplification and insufficient mesh resolution.
X