Refine Your Search

Topic

Search Results

Technical Paper

Ignition System Characteristics and Effects on Combustion for a Two-Stroke Engine

2002-03-04
2002-01-0644
Experiments were conducted using three different ignition systems on a single cylinder, two-stroke research engine. The ignition systems included a transistorized coil ignition (TCI), a capacitive discharge ignition (CDI), and a commercially available multistrike system (JCI). The sparks produced by each ignition system were characterized using three different types of spark plugs. Spark voltage and current data along with simultaneous high speed images of the spark process in a pressurized chamber were obtained. Each ignition system was evaluated in a two-stroke research engine in terms of cyclic variability, misfire rate, and indicated power produced. In addition, ion sensing was used to detect cycle misfires and various strategies were used to improve engine performance.
Technical Paper

A Comparison Between CFD Predictions and Measurements of Inlet Port Discharge Coefficient and Flow Characteristics

1999-09-28
1999-01-3339
Predictions of the volume flow rate through an inlet port were produced by four different commercially available CFD programs suitable for use in a steady flow simulation. These predictions were compared with experimental measurements of an inlet port's discharge coefficients. The experiment performed was a typical steady state flow bench test for an inlet port. Volume flow rates were measured at five different valve lifts. The largest valve lift tested (12.24mm) was the maximum value of lift under actual operation. The smallest valve lift was typical of early valve opening. The tests were performed at two different pressure differences across the inlet port and valve at each of the five different valve lifts. All predictions were made using an RNG k-ε turbulence model. Standard wall functions were used to predict wall friction effects and the energy equation was included to account for compressibility effects.
Technical Paper

Effects of Ignition Timing and Air-Fuel Ratio on In-Cylinder Heat Flux and Temperatures in a Four-Stroke, Air Cooled, Homogeneous Charge Engine

1999-03-01
1999-01-0284
In-cylinder heat flux and temperature measurements were obtained in an air-cooled four-stroke utility engine for a range of air-fuel ratios. For these measurements, the magnitude of the integrated heat flux peaked at the stoichiometric air-fuel ratio, with an approximately linear decrease on either side of stoichiometric. Advancing the spark generally increased the magnitude of the integrated heat flux. Evaluation of the Brake Specific Integrated Heat Flux (BSIHF) mitigated these trends, and, the effects of changes in timing were eliminated for some operating conditions Examination of the BSIHF from the compression and expansion stroke showed behavior mimicking the full cycle BSIHF. However, the fraction of the total flux contributed by this portion of the cycle varied greatly from approximately 98% of the total to approximately 75% of the total.
Technical Paper

Steady-State Thermal Flows in an Air-Cooled, Four-Stroke Spark-Ignition Engine

1999-03-01
1999-01-0282
Measurements of the instantaneous heat flux at three positions on the cylinder head surface, and the steady-state cylinder head temperatures at four positions on the cylinder head have been obtained. Engine tests were performed for a range of air-fuel ratios including regimes rich of stoichiometric, stoichiometric, and lean of stoichiometric. In addition, ignition timing was advanced in increments from 22° BTDC to 40° BTDC. All tests were run with the throttle either fixed in the wide open position, or fixed in a position that produced 75% of the maximum power with the standard ignition timing and an air-fuel ratio of 13.5. This was done to ensure that changes in air mass flow rate were not influencing the results. In addition, all tests were performed with a fuel mixture preparation being provided by system designed to deliver a homogeneous premixed charge to the inlet port. This was done to ensure that mixture preparation issues were not confounding the results.
Technical Paper

In-Cylinder Mixing Rate Measurements and CFD Analyses

1999-03-01
1999-01-1110
Gas-phase in-cylinder mixing was examined by two different methods. The first method for observing mixing involved planar Mie scattering measurements of the instantaneous number density of silicon oil droplets which were introduced to the in-cylinder flow. The local value of the number density was assumed to be representative of the local gas concentration. Because the objective was to observe the rate in which gas concentration gradients change, to provide gradients in number density, droplets were admitted into the engine through only one of the two intake ports. Air only flowed through the other port. Three different techniques were used in analyzing the droplet images to determine the spatially dependent particle number density. Direct counting, a filtering technique, and autocorrelation were used and compared. Further, numerical experiments were performed with the autocorrelation method to check its effectiveness for determination of particle number density.
Technical Paper

Inlet Port Geometry and Flame Position, Flame Stability, and Emissions in an SI Homogeneous Charge Engine

1998-09-14
982056
This study investigates the relationship between intake port geometry, flame position and stability, and combustion rate and emissions in an air-cooled four-stroke engine where three intake ports of differing geometry have been tested. In particular, the production intake port geometry, and directed and helical intake port geometries were tested. It was a specific intent of this study to investigate the interaction between inlet port geometry, equivalence ratio and ignition timing, without interference from mixture preparation effects. Thus all tests were performed using a homogeneous mixture of propane and air. Significant differences in combustion stability, flame position and stability, burn rate and emissions were observed. For example, the flow induced by the helical port, which should be characterized by a dominant swirl motion, resulted in stabile, asymmetric flames at many of the operating conditions studied.
Technical Paper

Mass-Related Properties of Atomizers for Direct-Injection SI Engines

1998-02-23
980500
Mass-related properties of four atomizers were estimated with the use of a mechanical transient patternator. The properties presented on a temporal and spatial basis are the axial liquid mass flux, liquid fuel to air ratio, and liquid axial velocity. The data are presented in two formats. The first format consists of the mass-related properties that occurred radially between two planes positioned 2.0 cm and 2.25 cm along the atomizer axis. A second format consists of interpolated contour plots of the axial liquid mass flux for all of the spray systems studied. The atomizers used in the study consisted of three liquid-only high-pressure systems and one air-assist system. Two of the liquid-only high-pressure systems and the air - assist system were operated with a volumetric delivery of 20 mm3 per injection while injecting into ambient conditions. A third liquid-only high-pressure system was operated with a delivery of 15 mm3 per injection.
Technical Paper

In-Cylinder Heat Flux in a Four Stroke, Air-Cooled, Spark-Ignited Engine with Fixed Timing

1997-09-08
972708
In-cylinder heat flux, cylinder pressure, and flame arrival and position data were obtained at air fuel ratios ranging from 11 - 16 at 3060 rpm and approximately 80% load. The engine used was a single cylinder, 5 hp, fixed timing, four stroke, overhead valve, air-cooled engine. Methods of mixture preparation include that produced with the stock carburetor, and with a system designed to provide the engine with a homogeneous mixture (HMS). Heat flux was measured using a thermopile device consisting of 300 thermocouple pairs. A thin film platinum RTD was used to measure the temperature at the thermopile and correct for sensitivity of the thermopile output to thermopile temperature. Flame arrival near the sensor was found through the analysis of an ion voltage signal from a probe located next to the heat sensor. An effort was made to identify and account for the variables which influence in-cylinder heat transfer.
Technical Paper

Comparison Between Air-Assisted and Single-Fluid Pressure Atomizers for Direct-Injection SI Engines Via Spatial and Temporal Mass Flux Measurements

1997-02-24
970630
Two distinct atomization strategies are contrasted through the measurement of time and spatially dependent mass flux. The two systems investigated include a pressure atomizer (6.9 MPa opening pressure) and an air-assist atomizer. Both systems have potential for use in direct injection spark ignition engines. The mass flux data presented were obtained using a spray patternator that was developed to allow phased sampling of the spray. The temporal mass related history of the spray was reconstructed as volume versus time plots and interpolated mass flux contour plots. Results indicate substantial differences in the distribution of both mass and mass flux in space and time for the two injection systems. For example, the pressure atomizer at high mass delivery rates produced a spray that collapsed into a dispersed cylindrical shape while at low rates, generated a hollow cone structure.
Technical Paper

Injection Pressure Effects Upon Droplet Behavior in Transient Diesel Sprays

1997-02-24
970053
This paper reports on the investigation of injection pressure upon the droplet behavior in transient diesel sprays. Phase/Doppler results for a Diesel spray with a maximum fuel injection line pressure of 105 MPa are compared with previously acquired droplet size and velocity measurements for a Diesel spray with an injection pressure of 21 MPa. All measurements reported here were made in atmospheric conditions at a position near the nozzle. It is shown in these results that the droplet velocity and size profiles do maintain similarity despite the substantial change in injection pressure. Specific characteristics, for example, the appearance of subtle waves in the time-dependent spray data, are present in both data sets. Comparison of the measured droplet velocities and diameters with Weber number based stability criteria shows that increased injection pressure produces a higher percentage of droplets that are likely to breakup.
Technical Paper

Spray Combustion and Emissions in a Direct-Injection Two Stroke Engine With Wall-Stabilization of an Air-Assisted Spray

1997-02-24
970360
Previous experiments using an air-assisted spray in a two-stroke direct-injected engine demonstrated a significant improvement in combustion stability at part-load conditions when a wide injection spray was used. It was hypothesized that the decrease in variability was due to the spray following the combustion chamber wall, making it less affected by variations in the in-cylinder gas flows. For this study, experiments were conducted to investigate engine spray combustion for cases where engine performance was not dominated by cyclic variation. Combustion and emission performance data was collected for a wide range of injection timings at several speed/load conditions. Experimental data for combustion shows that combustion stability is relatively unaffected by injection timing changes over a 40 to 100 degree window, and tolerant to spark gap projections over a range of 0.7 to 5.2 mm, depending on operating conditions.
Technical Paper

Effects of Mixture Preparation Characteristics on Four-Stroke Utility Engine Emissions and Performance

1996-08-01
961738
A laboratory-based fuel mixture system capable of delivering a range of fuel/air mixtures has been used to observe the effects of differing mixture characteristics on engine combustion through measurement and analysis of incylinder pressure and exhaust emissions. Fuel air mixtures studied can be classified into four different types: 1) Completely homogeneous fuel/air mixtures, where the fuel has been vaporized and mixed with the air prior to entrance into the normal engine induction system, 2) liquid fuel that is atomized and introduced with the air to the normal engine induction system, 3) liquid fuel that is atomized, and partially prevaporized but the air/fuel charge remains stratified up to introduction to the induction system, and 4) the standard fuel metering system. All tests reported here were conducted under wide open throttle conditions. A four-stroke, spark-ignited, single-cylinder, overhead valve-type engine was used for all tests.
Technical Paper

Injection and Ignition Effects on Two-Stroke Direct Injection Emissions and Efficiency

1996-08-01
961803
To help understand the fundamental processes involved in direct injection, a research project was conducted using a single-cylinder, two-stroke research engine at a mid-speed, boat load operating condition. A 24 statistical factorial experimental design was applied. Of the factors tested at this operating condition, spray type was the most important factor affecting hydrocarbon emissions, followed by in-cylinder flow-related factors. Injection spray was also most important for nitrogen oxide emissions, carbon monoxide emissions, and efficiency. The dominant mechanism influencing the results was misfire, with other mechanisms present for specific responses.
Technical Paper

Measurement and Modeling of Thermal Flows in an Air-Cooled Engine

1996-08-01
961731
Control of the flow of thermal energy in an air-cooled engine is important to the overall performance of the engine because of potential effects on engine performance, durability, design, and emissions. A methodology is being developed for the assessment of thermal flows in air-cooled engines, which includes the use of cycle simulation and in-cylinder heat flux measurements. The mechanism for the combination of cycle simulation, the measurement of in-cylinder heat flux and wall temperatures, and comparison of predicted and measured heat flux in the methodology is presented. The methodology consists of both simulation and experimental phases. To begin, a one-dimensional gas dynamics code (WAVE) has been used in conjunction with a detailed in-cylinder flow and combustion model (IRIS) in order to simulate engine operation in a variety of operating conditions. The methods used to apply the model to the air-cooled engine case are described in detail.
Technical Paper

Carburetor Exit Flow Characteristics

1996-08-01
961730
Three different carburetor types have been tested to observe differences in the characteristics of the fuel/air mixtures produced. To characterize the fuel/air mixtures, two diagnostics have been applied: 1) High speed movies and subsequent analysis of the exit flow, and 2) measurement of the A/F ratio found in different positions within the intake manifold. The three different carburetor types that have been studied include a fixed-venturi, fixed-jet butterfly carburetor, a slide-valve carburetor, and a constant-velocity carburetor. Each carburetor type produced a unique set of exit flow characteristics, with differences in the optical density of fuel exiting the carburetor, and differences in the apparent amount of fuel on the intake manifold wall, entrained in the air flow, and in vapor phase.
Technical Paper

Emissions and Combustion Characteristics from Two Fuel Mixture Preparation Schemes in a Utility Engine

1995-09-01
952081
A laboratory-based fuel mixture preparation system has been developed that is capable of generating a wide range of fuel/air mixtures, including production of a premixed, prevaporized homogeneous charge, beginning with liquid gasoline fuel. This system has been developed to allow the study of the effects of fuel/air mixture preparation characteristics on engine combustion, in-cylinder pressure, and exhaust emissions. For the study to be described here, engine combustion behavior and emissions measurements were obtained for a wide range of A/F's with the fuel mixture preparation being produced in one case, by the stock carburetor operating with fixed throttle position, and the other case, with the custom-built system producing a homogeneous mixture (HM.) A four-stroke, spark-ignited, single-cylinder, overhead valve-type utility engine was used for all tests.
Technical Paper

The Development of Diagnostics and Testing Methods for the Characterization of Carburetor Exit Flow Conditions

1995-09-01
952078
This paper describes the development of diagnostics and testing methods for the characterization of carburetor exit flow conditions in small utility engines. These diagnostics include: 1) Three different methods of acquiring intake flow photographs. 2) A technique to measure the thickness of the fuel film running along the bottom of the intake manifold using the electrical properties of the fuel. 3) A system for measuring the A/F ratio across the carburetor exit using a heated catalyst to oxidize the sampled mixture and a wide-range oxygen sensor to determine the A/F of the reacted sample.
Technical Paper

A Rotary Valve Combustion System with Throttleless Inlet Charge Control

1994-03-01
940813
A Rotary Valve combustion System (RVS) is being developed which is a potential alternative to the conventional poppet valve combustion chamber systems currently in use on four-stroke reciprocating automotive engines. The RVS has been developed to operate in a Variable Valve Timing (VVT) mode, termed RVS/VVT. The system accomplishes variation of intake-valve-closure from 50 degrees After-Top-Center (ATC) to 250 degrees ATC. This broad range of variability is necessary to achieve throttleless power control from idle to full power. The RVS was evaluated for characteristics which were independent of its valve timing mode. These included: (1) system friction, (2) seal effectiveness, and (3) combustion performance at full load. System friction for the RVS valve train was measured by a pulley transducer on the drive-belt. Seal effectiveness was evaluated by static differential compression tests and dynamic blowby measurements.
Technical Paper

Imaging and Spatially Resolved Two-Color Temperature Measurements Through a Coherent Fiberoptic: Observation of Auxiliary Fuel Injection Effects on Combustion in a Two-Stroke DI Diesel

1994-03-01
940903
A two-stroke diesel engine was outfitted for operation with an electronic solenoid-controlled unit injector and an additional solenoid-controlled air-assisted injector at the inlet ports. Access through an existing pressure transducer port allowed installation of a sapphire window to the combustion chamber with very little disturbance to the combustion system. A coherent fiber optic bundle permitted remote visualization of the combustion event. Use of a gateable intensified solid-state camera permitted imaging at high effective shutter speeds at arbitrary times in the engine cycle. Imaging and two-color temperature and soot concentrations measurements were performed. Imaging results indicated a low-intensity diffuse ignition, away from the injector tip, for both the pilot spray in pilot-main tests and the main spray in the main-only runs. Remnants of the burning pilot spray congregated near the injector tip where a region of flame remained until main injection arrived.
Technical Paper

Interactions and Main Effects with Auxiliary Injection in a Two-Stroke DI Diesel Engine

1994-03-01
940677
A two-stroke diesel engine was outfitted for operation with an electronic solenoid-controlled unit injector and an additional solenoid-controlled air-assisted injector at the inlet ports. Factorial experiments were designed in order to quantify, in a statistically representative manner, the effects of pilot (or ‘split’) and port auxiliary injection on main fuel combustion. Results indicated that interactions between experimental parameters (such as between pilot fuel quantity and pilot-to-main spacing), as well as main effects are important in analyzing auxiliary fuel injection. The bulk gas temperature at main injection was determined primarily by the experimental parameters acting independently of one another, which is a case where main effects only are important. Conversely, analysis of indicated specific fuel consumption and peak cylinder pressure involved interactions of the experimental parameters in both cases.
X