Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Near-Wall Velocity Characteristics in Valved and Ported Motored Engines

1992-02-01
920152
To study the near-wall velocity characteristics, gas velocity measurements have been made near the cylinder head of a motored four-stroke engine using Laser Doppler Velocimetry (LDV), and near-wall flow characteristics have been observed in three different two-stroke geometries using Particle Image Velocimetry (PIV) and particle photographs. The results of these studies show that the behavior of the fluid near the wall depends on the engine intake geometry, combustion chamber geometry, and operating condition. The near-wall velocity characteristics tend to be one of two forms. In one form, the behavior is one of an extended region of low momentum fluid, where an imbalance in radial pressure gradient forces and centripetal forces exists because of the combined effects of fluid rotation and shear. Such a flow can be seen in engines with gas exchange systems that do not promote scrubbing of the wall, and in cylinder geometry that does not cause flow normal to the wall.
Technical Paper

Velocity Field Characteristics in Motored Two-Stroke Ported Engines

1992-02-01
920419
Particle image velocimetry (PIV) was used to study the velocity field characteristics in motored two-stroke ported engines. Measurements of the two-dimensional velocity field were made at the midplane of the clearance volume for bowl-in-head and disk combustion chamber geometries. Measurements were also obtained for two scavenging port geometries, i.e. a loop-scavenged engine and a loop-scavenged engine with a boost port. Results from this study show that in-cylinder geometry had a dominant effect on the flow structure observed at TDC. For example, with the boost-port scavenging crankcase, the disk-shaped chamber showed a turbulent flow-field at TDC with little large scale motion. In contrast, addition of a squish flow from the bowl-in-head geometry produced an organized cross-chamber flow. The addition of a boost port also changed the flow structure markedly. A large-scale swirl flow was observed in the engine that did not contain a boost port.
X